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ABSTRACT 

Generic Safety Issue-191 (GSI-191) was developed by the United States Nuclear 

Regulatory Commission (U.S. NRC) to assess the effect of debris loading on pressurized 

water reactor (PWR) emergency core cooling systems (ECCS) sump strainers during a 

Loss-of-Coolant Accident (LOCA).  Potential contributors to the debris loading include 

latent dirt, fiberglass insulation, paints, epoxies, and chemical products which form when 

containment surfaces interact with the released reactor coolant.  Chemical effects 

experiments have been completed to assess the potential debris loading contributions of 

zinc-bearing materials found in the containment building.  Zinc-bearing materials in 

containment include galvanized steel and inorganic zinc-coated steel (IOZ). 

This research has shown that zinc interacts with post-LOCA containment chemistry 

to form chemical products including zinc oxide and zinc phosphate, which may become 

available to transport to the ECCS sump strainers and impair safe operations.  A large 

amount of zinc release from the dissolution of zinc-bearing surfaces in acidic conditions is 

shown (up to 120 mg/L), and the retrograde solubility of zinc is confirmed, with strong 

implications during the cool-down phase of a post-LOCA scenario.  Zinc phosphate is 

shown to form rapidly in the chemical environment within post-LOCA containment 

following the dissolution of containment buffer trisodium phosphate (TSP), and controls 

the solubility of dissolved zinc (to less than 1 mg/L).  The reduction of dissolved zinc 

concentration from 120 mg/L to less than 1 mg/L through zinc phosphate precipitation may 

significantly contribute to the debris loading on ECCS sump strainers and increase sump 

head loss. 
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Zinc is shown to reduce the corrosion and release from aluminum and iron sources 

in containment, cathodically shielding those sources and reducing the chemical products 

of iron and aluminum that contribute to the loading on the ECCS sump strainer.  Therefore, 

while a high release of zinc and the resulting zinc-product precipitation is not favorable for 

ECCS functionality, zinc is shown to reduce the possible contributions of aluminum 

corrosion products. 
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CHAPTER 1: INTRODUCTION 

Modern nuclear reactors are highly complex systems with numerous functions and 

components.  As with any complex system, multiple points of failure are inherent to the 

infrastructure of the nuclear industry.  Accidents at Chernobyl (1986) and more recently at 

Fukushima Daiichi (2011) have shown that, even with sophisticated monitoring and 

advanced engineering, not all points of failure may be identified before an accident-

triggering effect causes a failure which threatens the safety of the surrounding environment 

and inhabitants.  The United States Nuclear Regulatory Commission (NRC) was 

established in 1975; one function of the U.S. NRC is to ensure that nuclear facilities 

observe guidelines to maintain the safety and health of the public, operators, and 

environment during normal operations and in the event of an accident.  A Loss-of Coolant 

Accident (LOCA) is one accident type that has received attention from the NRC. 

A LOCA is an event in which primary coolant pipes or coolant storage units are 

compromised, releasing the coolant into containment.  Coolant that is lost during a pipe 

break transports throughout containment, until arriving at the Emergency Core Cooling 

Systems (ECCS) sump pump, which recycles the coolant back through the reactor core to 

mitigate the effects of coolant loss and to prevent core damage.  Until the ECCS sumps are 

activated and circulate the coolant back into the reactor, injection pumps supplied by the 

refueling water storage tank (RWST) are used to add supplementary coolant to prevent 

core damage [1]. 
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Figure 1. Animation of LOCA, containment sumps, and RWST [2] 

 

In 1979, the U.S. NRC developed Unresolved Safety Issue (USI) A-43 to address 

adequate coolant water availability following the events of a LOCA, and the ECCS sump 

functionality [3].  This study required that the recirculated water must be free of LOCA-

generated debris and air ingestion to ensure that the recirculation capabilities are not 

degraded.  USI A-43 was formally resolved in 1985 [4] [5]. A few events in the following 
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decade caused a re-evaluation of coolant availability and sump performance during a 

LOCA. 

In 1992, the Swedish boiling water reactor (BWR) at Barsebäck Nuclear Power 

Plant Unit 2 experienced an event in which two of the containment vessel spray systems 

(CVSS) were plugged by mineral wool insulation from a pilot-operated relief valve only 

70 minutes into the event [6].  In early 1993, the Perry Nuclear Power Plant experienced 

two events involving ECCS strainer clogging [7]. Debris in the suppression pools triggered 

both cases of strainer clogging; in the second event, corrosion products collected on 

accumulated glass fiber debris, and further hindered flow through the ECCS strainers.  In 

1995, Limerick Unit 1 experienced debris accumulation on suction strainers of the ECCS 

pumps [8].  In response to these events, the NRC issued Generic Safety Issue (GSI)-191: 

“Assessment of Debris Accumulation on PWR Sump Performance”.  It was found that the 

problem is mitigated by increasing the total exposed surface area of the sump strainers [9]. 

In the early 2000s, the NRC Office of Nuclear Regulatory Research Division of 

Fuel, Engineering and Radiological Research funded Los Alamos National Laboratory 

(LANL) to explore chemical effects and corrosion in a post-LOCA environment.  In 

coordination with The University of New Mexico (UNM), LANL developed the Integrated 

Chemical Effects Test (ICET) project.  A series of large-scale chemical tests with varying 

chemistry representative of several PWRs were conducted.  These tests simulated the 

corrosive environment of a post-LOCA scenario with plant-specific chemicals, surfaces, 

and temperatures [10].  The research presented herein serves as additional confirmatory 

research for GSI-191. 
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This research has been developed to study the chemical effects of zinc-bearing 

materials and interpret their potential effects as they relate to the resolution of GSI-191.  

Batch tests with representative samples of zinc-bearing materials and Vogtle Electric 

Generating Plant (Vogtle)-specific LOCA chemical and physical conditions were 

performed.  Zinc-bearing materials found in containment include galvanized steel gratings 

and untopcoated zinc-coated surfaces, such as inorganic zinc-coated steel (IOZ).  Zinc-

bearing materials tested include hot-dipped galvanized steel, IOZ, and pure zinc.  Three 

phases of post-LOCA events have been considered: (1) early-stage LOCA, where no 

chemical buffering has been introduced to the coolant; (2) the transition-stage of the post-

LOCA chemical environment, where zinc-bearing sources transition from exposure with 

coolant exclusively to when chemical buffering has been introduced to the coolant, thereby 

neutralizing its pH and reducing its corrosivity; and (3) middle- to late-stage post-LOCA, 

where chemical buffering is present, and the ECCS recirculation ensures well-mixed 

containment chemistry. 

This research will demonstrate whether zinc-bearing materials found in 

containment warrant further consideration in sump performance concerns based on 

solubility, material release correlations, and precipitate formation.  An accurate 

quantification of (1) release from zinc and (2) zinc corrosion product precipitation will 

conclusively determine whether zinc-bearing materials are capable of destructive 

interactions with ECCS operations.  This will inform whether zinc-bearing materials in 

containment require additional attention in the resolution of GSI-191. 

Several analytical and predictive techniques have been used to quantify the threat 

that zinc-based chemical products pose on ECCS sump performance.  Techniques to 
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validate conclusions include equilibrium thermodynamic simulation, aqueous 

concentration measurement by inductively-coupled plasma optical emission spectroscopy 

(ICP-OES, or “ICP”), solution turbidity measurements for qualitative aqueous corrosion 

product suspension, surface analyses such as scanning electron microscopy (SEM) and 

Energy-Dispersive X-Ray Spectroscopy (EDS), and chemical responses such as pH shifts 

and electrochemical shielding.  Limitations of this research primarily pertain to the 

experimental scale; all experiments are performed as 500mL aqueous batch tests using 1-

inch square metallic surrogates. 
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CHAPTER 2: ZINC PHENOMENOLOGY AND BACKGROUND 

2.1 Zinc Phenomenology 

An aqueous chemical environment consisting of nuclear reactor coolant is a complex 

system.  Several chemicals are present in varying amounts and concentrations, and 

decoupling chemical effects and attributing observations to specific chemicals or 

conditions is a challenge.  It is necessary to establish a sound understanding of 

phenomenology of the chemical effects to aid in the attribution of specific effects to 

individual chemicals. 

The primary goal of this research is to establish the credibility of the threat that zinc 

sources contribute to ECCS operation.  Three primary phenomenologies will be examined, 

and will be applied to the body of research presented herein to assess the contributions of 

zinc to safe operations in a post-LOCA environment. 

These phenomenologies include: (1) dissolution, or how readily zinc is introduced 

to the aqueous environment following a LOCA; (2) electrochemistry, or the interaction of 

zinc with other chemical species, including dissolved gasses, the base material onto which 

zinc or zinc-based coatings are applied (such as iron), and aqueous chemical species with 

electrochemical potentials which favor redox reactions with zinc; (3) the precipitation of 

zinc species, and how they may contribute to debris accumulation on the ECCS sump 

strainer’s debris bed for head loss; and in addition to these phenomenologies, (4) 

thermodynamic equilibrium software, which will predict the favored chemical conditions 
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of the system and to aid in the resolution of competing factors such as dissolution and 

precipitation. 

It is necessary to establish fundamental terminology to describe the state in which 

zinc is found.  There are three classifications that are used, each with a unique and distinct 

meaning.  These classifications include: (1) metallic zinc, or zinc which is in its original 

electronic configuration as a galvanic surface or in a corrosion resistant primer; (2) 

dissolved zinc, which describes zinc that has experienced oxidation to the divalent state, 

and is present as a solute in and aqueous solution, either as divalent zinc alone, or in 

aqueous chemical products; and (3) zinc precipitate, which is a chemical product of zinc 

and either one or multiple other chemicals and compounds, and which is not dissolved in 

solution, and has formed a solid compound that may contribute to ECCS sump blockage. 

2.1.1 Dissolution and Electrochemistry of Zinc 

The process of zinc dissolution is inherently an electrochemical phenomenon.  Zinc-

coatings, whether as a galvanic coating on steel or a zinc-based primer painted onto a wall, 

contain zinc in metallic form.  Zinc is found neither oxidized nor reduced from a neutral 

electronic configuration. 

There are two mechanisms of zinc dissolution and electrochemistry which are 

necessary for analysis of this body of research: (1) oxidation of zinc in aqueous 

environment, requiring the reduction of aqueous or dissolved species; and (2) the galvanic 

protection of iron. 
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2.1.1.1 Oxidation of Zinc in an Aqueous Environment  

There are two considered mechanisms for zinc oxidation in the aqueous system of reactor 

coolant: the reduction of dissolved molecular oxygen and the consumption of excess 

hydronium to form molecular hydrogen. 

Dissolved oxygen is present in any aqueous environment which is exposed to a 

source of oxygen, such as the atmosphere.  Nuclear reactor containment buildings are kept 

sealed, but an inventory of oxygen is still present to supply technicians with breathable air. 

The primary reaction that involves the reduction of dissolved oxygen and the 

oxidation of metallic zinc is shown in Equation 1. 

Equation 1. Zinc oxidation with dissolved molecular oxygen 

2𝑍𝑛(𝑠) + 𝑂2(𝑎𝑞) → 2𝑍𝑛𝑂(𝑠)                        𝐸° > 0 [11] 

The quantity E° is the standard cell potential [11].  This quantity is related to the 

Gibbs free energy of the chemical reaction, as shown in Equation 2.   

Equation 2. Relation of Gibbs free energy and electrochemical cell potential 

𝑛𝐹𝐸° = −𝛥𝐺° 
𝑤ℎ𝑒𝑟𝑒 𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 
𝑎𝑛𝑑 𝐹 = 𝐹𝑎𝑟𝑎𝑑𝑎𝑦′𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

The Gibbs free energy of the reaction indicates the thermodynamic favorability of 

a product over the starting reactants.  A negative value designates a thermodynamically 

favorable reaction.  Therefore, a positive electrochemical cell potential designates the 

direction of a thermodynamically favorable reaction. 
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In Equation 1, the electrochemical cell potential is positive. This shows that the 

reduction of dissolved molecular oxygen and the oxidation of metallic zinc is favorable.  

This mechanism is therefore one possible method by which zinc is transformed into 

divalent zinc from a metallic zinc source. 

The second primary reaction for zinc oxidation in an aqueous environment involved 

the reduction of hydronium to molecular hydrogen.  Hydronium content in a solution is 

typically quantified with the physical property pH, which is a logarithmic representation 

of hydronium content.  A solution is said to have a numerical pH value of less than seven 

if the hydronium content dominates the hydroxide content; this solution is referred to as 

acidic. 

Nuclear reactor coolant is primarily comprised of dissolved boron in the form of 

hydrogen borate, or boric acid.  Boron is a neutron poison and serves as a chemical shim.  

In a boric acid aqueous environment, hydronium is readily available, and the solution is 

acidic.  Other chemicals—such as lithium hydroxide—are also present, but are in trace 

amounts, and are insufficient to reduce the solution’s hydronium content adequately to 

reduce the acidity of the reactor coolant.  Lithium is added to alkalize the coolant solution, 

and is typically present in about 2 mg/L. 

The reaction that involves the reduction of hydronium into molecular hydrogen and 

the oxidation of zinc is shown in Equation 3.   
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Equation 3. Zinc dissolution in acidic media 

𝑍𝑛(𝑠) + 2𝐻+(𝑎𝑞) → 𝑍𝑛2+(𝑎𝑞) + 𝐻2(𝑔)                                      𝐸° > 0 [11] 

In Equation 3, the electrochemical cell potential is again positive. This shows that 

the reduction of hydronium and the oxidation of metallic zinc is favorable.  This 

mechanism is therefore one possible method by which zinc is transformed into divalent 

zinc from a metallic zinc source. 

2.1.1.2 Oxidation of Zinc through the Galvanic Protection of Iron  

Zinc is found in containment primary as a coating on steel structural materials as a 

sacrificial corrosion metal.  The dissolution of iron in an acidic environment, such as 

reactor coolant, is considered in Equation 4. 

Equation 4. Iron dissolution in acidic media 

𝐹𝑒(𝑠) + 2𝐻+(𝑎𝑞) → 𝐹𝑒2+(𝑎𝑞) + 𝐻2(𝑔)                 𝐸° > 0 [11] 

The electrochemical cell potential of this reaction shows that in an environment 

with sufficient hydronium content, such as reactor coolant, iron will favorably oxidize to 

the divalent state. 

For zinc to effectively protect steel from oxidation—and ultimately structural 

failure—the cell potential of metallic zinc with divalent dissolved iron must have a positive 

cell potential.  If Equation 4 is subtracted from Equation 3, the resulting chemical reaction 

is shown in Equation 5. 
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Equation 5. Zinc galvanic protection of divalent iron 

𝑍𝑛(𝑠) + 𝐹𝑒2+(𝑎𝑞) → 𝐹𝑒(𝑠) + 𝑍𝑛2+(𝑎𝑞)                𝐸° > 0 [11] 

Equation 5 has shown that if iron begins to oxidize and dissolve, and if metallic 

zinc is in electrical contact—or able to transfer electrons—with the iron experiencing 

oxidation, the zinc will favorably oxidize before the iron, thereby galvanically protecting 

the iron-based steel. 

If iron is found in the trivalent form, Equation 6shows that iron is still galvanically 

protected by metallic zinc. 

Equation 6. Zinc galvanic protection of trivalent iron  

3𝑍𝑛(𝑠) + 2𝐹𝑒3+(𝑎𝑞) → 2𝐹𝑒(𝑠) + 3𝑍𝑛2+(𝑎𝑞)           𝐸° > 0 [11] 

2.1.1.3 Summary of Dissolution and Electrochemical Phenomenology 

The phenomenologies established in this section has shown that zinc may follow one of 

three mechanisms to experience oxidation from the metallic form to the divalent state.  

Dissolved molecular oxygen has a relatively high electrochemical cell potential when 

combined with metallic zinc, and will preferentially oxidize zinc.  An acidic medium is 

also sufficient to oxidize both zinc and iron.  The third mechanism for zinc oxidation is if 

iron is oxidized while in electrical contact with zinc, in which case iron will remain metallic 

and zinc will preferentially oxidize. 
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2.1.2 Precipitation and Thermodynamic Equilibrium Simulations 

The previous sections introduced the mechanisms through which zinc may oxidize and 

dissolve into the aqueous environment in post-LOCA containment.  This section will 

address how oxidized and dissolved zinc may contribute to ECCS sump strainer 

performance. 

The thermodynamic equilibrium modelling package Visual MINTEQ™ [12] has 

been utilized for aqueous chemistry modelling, including such phenomenology as 

precipitation and solubility predictions. 

2.1.2.1 Thermodynamic Modelling Software Inputs 

There are three primary chemical constituents which are present post-LOCA and are 

considered in these simulations: dissolved zinc, trisodium phosphate (TSP) buffer, and 

soluble boron in the form of boric acid.  TSP buffer was added to these simulations in 

quantities ranging from 5.58 millimolar to 10 millimolar, while other simulation contain 

no TSP, to match the experimental design established in Section 3: Materials and 

Methodology.   Dissolved boron is present at 2400 ppm, which is equivalent to 220 

millimolar boric acid.  The dissolved zinc input is permitted to vary throughout simulations, 

depending on the expected values for the given initial conditions, which will be provided 

for each simulation. 
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With the chemicals listed above, there are seven chemical precipitates in the Visual 

MINTEQ database for the given aqueous system.  These precipitates are detailed in Table 

1.   

Table 1.Zinc-based chemical precipitates considered 

Precipitate Chemical Composition 

Zinc borate  Zn(BO2)2 

Zinc hydroxide (am) Zn(OH)2 

Zinc hydroxide (beta) Zn(OH)2 

Zinc hydroxide (delta) Zn(OH)2 

Zinc hydroxide (epsilon) Zn(OH)2 

Zinc hydroxide (gamma) Zn(OH)2 

Zinc Phosphate  Zn3(PO4)2:4H2O 

 

All chemical solutions contain 220 millimolar boric acid.  The baseline chemical 

pH of such as solution is roughly 4.5.  Figure 2 shows how the solution pH reacts to the 

addition of TSP in amounts up to 10 millimolar. 
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Figure 2. pH response to TSP addition in 220 mM boric acid solution 

 

Figure 1 has shown that a solution of boric acid with no TSP added will settle at a 

pH of roughly 4.5-4.6.  A solution containing 5.58 millimolar TSP will have a pH of 7.0-

7.1.  A solution with 10 millimolar TSP will settle at a pH of roughly 7.3.  The addition of 

TSP has the greatest effect on the pH of the solution when there is little TSP already 

present. 

2.1.2.2 Simulations for Zinc Precipitation in Unbuffered Coolant 

Two simulations have been developed to show the solubility and precipitation activity of 

dissolved zinc in a chemical environment lacking TSP buffer.  For these two simulations, 

arbitrary zinc concentrations have been selected: 100 mg/L and 1 mg/L dissolved zinc.  

These values are close to limits that have been established in historical efforts [13], [14].  

Boric acid was present at 220 millimolar. 
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Simulations in which the pH was swept through a range of 0.1 to 14 pH units in 0.1 

unit increments. The results of these simulations are shown in Figure 3. 

Figure 3. Zinc precipitation response to unbuffered solution 

 

These simulations have shown that zinc precipitation is possible at sufficiently high 

pH.  This plot has also revealed that zinc precipitation occurs in two forms, with the 

transition between precipitates occurring at a pH of roughly 9.7.   

The identity of the chemical precipitates may be determined through saturation 

index analysis.  When a saturation index is negative for a given chemical species, the 

species is aqueous, and not a precipitate. A saturation index value of zero corresponds to a 

pH region where precipitation occurs.  The saturation index analysis for these two 

simulations is provided in Figure 4 and Figure 5. 
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Figure 4. Saturation indices for unbuffered 100 mg/L initial zinc  

 

Figure 5. Saturation indices for unbuffered 1 mg/L initial zinc 

 

The saturation index analysis has shown that zinc will precipitate in one of two 

forms, zinc borate and zinc hydroxide. 
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The minimum necessary pH required for zinc borate precipitation from these 

simulations is detailed in Table 2.  The maximum pH for precipitation is well beyond the 

range of expected pH values for a post-LOCA environment. 

Table 2. Summary of precipitation conditions in unbuffered simulations 

Initial Zinc 

Concentration 

Minimum pH 

For Precipitation 

Of Zinc Borate 

pH for Maximum 

Precipitation 

Minimum Zinc 

Concentration 

100 mg/L 6.3 8.7 0.108 mg/L 

1 mg/L 7.4 8.7 0.108 mg/L 

 

This analysis has shown that a pH increase of roughly 1.8 pH units from the initial 

borated solution is necessary to induce precipitation when 100 mg/L of zinc is available.  

An even greater pH increase is required to form zinc precipitates when the initial zinc 

concentration is below 100 mg/L. 

There is no available mechanism that has been considered that would cause such a 

dramatic pH increase, without the addition of TSP buffer.  Therefore, zinc precipitation in 

an unbuffered environment is not considered in this research. 

2.1.2.3 Simulations for Zinc Precipitation in Unbuffered Coolant 

The previous section has concluded that zinc precipitation in unbuffered systems is 

negligible.  This section will discuss whether zinc precipitation in TSP-buffered systems 

should be considered. 
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Six simulations were developed to determine the conditions necessary to cause 

precipitation of dissolved zinc with TSP present.  Three dissolved zinc concentrations and 

two TSP concentrations were used.  Zinc content included 1 mg/L, 20 mg/L, and 100 mg/L; 

TSP content was either 5.58 millimolar or 10 millimolar.  Boric acid was present at 220 

millimolar. 

For these six simulations, a bulk solution of boric acid and one concentration of 

zinc was developed. A titrant was created with the same composition, but with TSP also 

included.  The titrant was mixed to the bulk solution in 100 equal additions to simulate the 

dissolution of TSP in containment.  Dissolved zinc and saturation index quantities were 

calculated with each titrant addition.  The dissolved zinc calculations are shown in Figure 

6. 

Figure 6. Zinc precipitation in buffered coolant 
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These simulations have shown that zinc precipitation will occur when TSP is added 

in sufficient amount.  A value which is of note through these simulations is the predicted 

dissolved zinc concentration when all of the TSP inventory has been added.  Dissolved 

zinc is limited to 0.10 mg/L when 10 millimolar TSP is present, and 0.13 mg/L when 5.58 

millimolar TSP is present.   

An interesting finding with these simulations is that precipitation consistently 

occurs along a common pH-zinc concentration curve, independent of the TSP or initial zinc 

concentration. 

The identity of the chemical precipitates has been determined through saturation 

index analysis to be zinc phosphate only; no other precipitates formed within the pH range 

studied. 

2.1.2.4 Simulation Conclusions and Limitations of the Simulations 

There are two primary conclusions to be drawn from these simulations.  First, zinc 

precipitation is more favorable in conditions where zinc is present in a greater 

concentration.  This is true whether TSP buffer was present or not.  The solubility product 

constant, Ksp, states that the concentration of dissolved zinc required to induce precipitation 

goes as a function of the zinc concentration to a positive integer power, which varies 

depending on the dissolved zinc species considered.  As an example, the solubility product 

constant for zinc phosphate formation is shown in Equation 7. 
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Equation 7. Qualitative zinc phosphate solubility product constant relation 

𝐾𝑠𝑝,𝑧𝑖𝑛𝑐 𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 ∝ [𝑍𝑛]3[𝑃𝑂4]2 

Therefore, the discovery that zinc precipitation is more favorable at greater zinc 

concentrations is confirmed. 

The second conclusion to be inferred from these simulations is that zinc phosphate 

is the only zinc-based chemical precipitate that is expected to form in a post-LOCA 

scenario.  For simulations lacking TSP buffer, zinc borate was predicted to precipitate, but 

only at a pH that exceeds what is expected to occur in a post-LOCA environment.  For 

simulations with TSP buffer, zinc phosphate precipitation dominated all other chemical 

precipitate formation. 

However, there are limitations to Visual MINTEQ software and the assumptions in 

the simulations performed.  All of these simulations were limited to room-temperature 

which may not be representative due to the temperature dependence of solubility and 

precipitation.  The databases for Visual MINTEQ do not include accurate enthalpic 

information beyond standard temperature and pressure (STP). 

Additionally, there may be several other chemicals present in a post-LOCA 

environment which were not considered for these simulations, such as calcium, silicates, 

aluminum, and lithium.  This is not considered a significant hindrance, though, because the 

chemical expected to cause significant precipitation (phosphate) is typically present in 

great excess, and other chemical reactions would not parasitically remove the entire 

inventory of phosphate. 
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2.2 Historical Work and Literature Review 

2.2.1 Integrated Chemical Effects Tests and Chemical Head Loss Experiment 

In the early 2000s, LANL and UNM collaborated to perform the ICET series [10].  The 

ICET series was designed to examine the chemical effects of common containment 

materials in the event of a LOCA.  Each of the five tests conducted was distinguished by a 

different combination of buffering agents and insulation materials.  The buffering agents 

included TSP, sodium tetraborate, and the strong base sodium hydroxide (NaOH).  Metallic 

surfaces—including aluminum, copper, carbon-steel, galvanized steel, and IOZ—were 

added to the testing environment to simulate the response these materials would have to 

the chemical environment of a LOCA.  Galvanized steel and IOZ represent the sources of 

zinc in these experiments.  The ICET series tests operated continuously for thirty days at 

60°C, with a total aqueous inventory of 250 gallons. 
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Figure 7. ICET tank [15] 

 

There were a few common trends across all ICET experiments which relate to the 

zinc effects.  Galvanized steel coupons tend to gain the most net mass when exposed to 

TSP buffering.  This observation suggests that a chemical product must be precipitating on 

the galvanized steel coupons which is not present in tests with the other chemical buffers.  

Phosphate is the only chemical present in TSP-buffered tests which does not also appear 

in the other tests, so therefore the logical supposition is that zinc phosphate has formed and 

precipitated on the galvanized steel surfaces. 
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Figure 8. Metal coupon rack for the ICET experiments [16] 

 

In the ICET series, the IOZ coating did not detach from the steel surfaces onto 

which they were applied.  This confirmed that zinc is not released in particulate form, 

which would more destructively interfere with ECCS sump operations than smaller 

chemical precipitates. 

In the ICET series, zinc tended to concentrate in solution early during the test, but 

the zinc in solution fell to below 1 mg/L within the first twenty-four hours for four tests; 

the fifth test required four days to fall below 1 mg/L total dissolved zinc. 

The second of the ICET experiments, or “ICET 2” [16], had a chemical 

environment most similar to the body of research presented in Chapter 4.  Therefore, 

special attention is paid to the findings of this test.  ICET 2 coupon surfaces were found to 

be much more reactive to local chemistry; this effect is attributed to the presence of 



www.manaraa.com

24 
 

phosphate.  Also attributed to the presence of phosphate was the reduction of the quantity 

of chemical precipitates. 

In ICET 2, the major contributor to both turbidity (a qualitative measurement of 

water clarity) and total suspended solids (TSS) was released zinc.  The concentration and 

release behaviors of other chemicals did not correspond to changes in turbidity or TSS.  

This finding suggests that zinc has the potential to destructively interact with ECCS 

operations by producing chemical products that may become stuck in the ECCS strainers, 

preventing coolant flow through the sump. 

 At the conclusions of the ICET series, the testing facility was repurposed by UNM.  

The Chemical Head Loss Experiment (CHLE) program was design with the existing 

infrastructure.  The capabilities of ICET were expanded to allow the aqueous inventory of 

experiments to pass through a vertical strainer which measured the head loss of 

recirculation pumps.  Four of the CHLE tank tests will be discussed due to the similarities 

with this body of research; the included experiments are CHLE Tank Test #2 (T2) [17], 

T3, T4 [14], and T5 [18].  The CHLE tank testing series is ongoing at the time of this 

document’s writing. 
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Figure 9. CHLE vertical strainer head loss columns [19] 

 

In all four tests considered, it was determined that zinc was a primary source of 

solution turbidity.  This suggests that as zinc undergoes electrochemical oxidation and 

dissolves into solution, it forms complexes which are either large or numerous or both 

(turbidity cannot resolve the difference), which become available to contribute to head loss.  

In fact, some of the head loss activity measured in the columns also corresponded with zinc 

concentration and turbidity, further reinforcing the contributions that zinc will have on 

ECCS operations.  Elemental spectral data, through EDS and x-ray diffraction analysis 

(XRD), found that zinc phosphate scale transported throughout the system, becoming 

deposited in the tank floor, on the surfaces of coupons, and the fiberglass detector bed in 

the head loss columns. 

Data for zinc concentration, particle size, head loss, and turbidity are included in 

Figure 10, Figure 11, and Figure 12. 
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Figure 10. CHLE T3 zinc concentration filtered and unfiltered [14] 

 

Figure 11. Particle size in T3 (has zinc) and T4 (has no zinc) [14] 
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Figure 12. Turbidity and head loss response in T3 (has zinc) and T4 (has no zinc) [14] 

 

2.2.2 Other GSI-191 Efforts 

Zinc corrosion experiments [20] performed by LANL and UNM were conducted to 

quantify the effect that zinc would have on sump head loss.  This effort was divided into 

two groups of tests: bench-top corrosion experiments and dissolved metal salts tests.  Zinc 

granules, zinc coupons, and crumbled IOZ were tested at the benchtop scale, and zinc 

nitrate salt was introduced into the vertical loop head loss column. 

In the benchtop corrosion studies, it was found that zinc release is more favorable 

early-on in experiments, and scale formation is more favorable after one week.  As a 

control, similar experiments were performed in pure water, which lack the LOCA 

chemistry; zinc ceased corrosion after four days, which suggests that zinc corrosion is 

dependent on LOCA chemistry. 

In the dissolved metal salts testing, chemical head loss was not observed until zinc 

in solution reached a threshold concentration of 6.5 mg/L.  This concentration of dissolved 
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zinc was only achieved on the benchtop tests in room-temperature solutions; the higher 

temperature solutions had a lower zinc concentration, which reinforces the concept of 

retrograde solubility with dissolved zinc. 

Additional zinc corrosion tests were performed at the Finnish Centre for Radiation 

and Nuclear Safety [21].  These experiments revealed two key behaviors of zinc in a post-

LOCA environment.  The first was that the presence of borate was shown to significantly 

increase the solubility of dissolved zinc.  The second observation was that, at a lower pH, 

zinc surfaces tend to interact more destructively with the testing solution.  These two 

concepts work together, because in a post-LOCA environment, the borated coolant is at a 

low pH—two factors which are shown to increase zinc release and corrosion. 

Head loss testing was executed at the KorrVA Testing Facility [13] to examine the 

influence of corrosion on ECCS sump head loss.  Galvanized steel sources were introduced 

into a chemical and physical environment resembling a post-LOCA environment, and 

included boric acid, insulation, and recirculating capabilities through a head loss detector 

bed imitating the function of an ECCS sump strainer. 

These experiments showed behavior with zinc and zinc-based corrosion products 

that was similar to the observations from other experiments.  Dissolved zinc again showed 

the retrograde behavior of solubility through the experimental temperature spectrum, with 

zinc concentrations reaching as high as 90 mg/L at a temperature of 45°C.  Lithium 

hydroxide, which is a common additive to reactor coolant, restricted the solubility of 

dissolved zinc, through the most probable mechanism of neutralizing the pH, which has 

been shown to limit the release and solubility of zinc. 
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The corrosion and removal of the protective coating on galvanized steel was found 

to be a precondition for an increase of head loss.  The measured head loss only increased 

after this protective coating was compromised, which suggests that the underlying steel 

participated in corrosion and dissolution, with rust and other iron-based corrosion products 

transporting to the insulation detector bed.  Head loss was found to be higher in more acidic 

conditions, because zinc- or iron-based chemical corrosion products are more likely under 

a more acidic condition, and transport to the debris bed on the insulation detector bed. 

2.2.3 Non-GSI-191 Efforts 

This section will introduce several bodies of research from peer-reviewed literature to 

establish the context behind various zinc corrosion phenomenology.  The topics will 

include (1) oxidation and dissolution of zinc, (2) aqueous complexation of zinc and zinc 

compounds in similar and other fields, and (3) the phosphating of dissolved zinc, and the 

precipitation of zinc phosphate.   

2.2.3.1 Dissolution 

The dissolution of zinc into an aqueous environment requires as specific set of conditions.  

In metallic form, zinc exists as a neutral, non-ionic element.  As a dissolved and oxidized 

element, zinc exists as a divalent cation.  The divalent positive charge that is found with 

oxidized zinc is a result of the rejection of the 4s orbital electrons to an oxidant. 
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A method for measuring the dissolution and corrosion of galvanized steel has been 

presented [22].  In this article, the chemical response to alkaline solutions is presented with 

an electrochemical method for measuring the response to an applied current. 

In the case of a pure zinc anode with no significant cathodic reactions, the rate of 

zinc dissolution may be measured through a potentiostat measurement, where a partial 

elementary current corresponds to the dissolution rate of zinc.  A positive film growth rate 

suggests that the oxidation reaction dominates the dissolution reaction, and a film of zinc 

oxide/hydroxide has grown.  Conversely, a negative film growth rate implies that the 

oxide/hydroxide film is dissociating and releasing into the solution. 

The experimental scope included a stepwise increase in the ionic strength and 

alkalinity of the electrochemical solution by addition of sodium hydroxide resulting in 0.1 

M to 1.0 M sodium.  Through each addition of sodium hydroxide, a new electropotential 

was measured, and a calibration developed for a reaction rate of surface zinc to soluble 

speciation. 

The main findings of the publication include a validation of the technique for 

measuring zinc dissolution.  Three individual types of oxides have been distinguished 

based off of their respective potentials, which have been shown to induce different phases 

of oxides. 

The main contribution this publication has to this body of research is that product 

formation kinetics are dependent on the saturation of zinc ions in the solution.  If there is 

insufficient zinc in solution, a source will corrode and dissolve to achieve the saturation 

limit.  Conversely, if a solution is oversaturated, zinc-based chemical products will be 

formed as a mechanism to reduce the concentration of dissolved zinc. 
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The dissolution and deposition mechanism for zinc in an acidic sulfate medium has 

been studied [23].  Electrochemical Impedance Spectroscopy (EIS) and Electrochemical 

Quartz Crystal Microbalance (EQCM) analytical techniques have been applied to monitor 

the dissolution and deposition.  EIS is a technique applied due to its ability to interpret the 

electrochemical mechanisms of dissolution and passivation quantitatively.  EQCM is used 

in conjunction with EIS because it has the capability to obtain information on the mass that 

is dissolved and deposited during electrochemical processes. 

It was reported that between a potential of -1.05 and -1.35 V that zinc is reduced 

and deposited on a gold electrode.  Through this electrochemical potential range, 

hydronium is also reduced, liberating hydrogen gas.  In the range of potential between -

1.05 and -0.70 V, it was reported that zinc dissolves and leaves the gold anode. 

When electrochemical experiments with the dissolution potential and deposition 

potential run cyclically, hypothetically, there should be a balance that is established, where 

the dissolution and deposition are run to completion.  This hypothesis was not observed, 

but rather, a non-compensated increase of zinc deposition was observed.  This increase of 

mass through several cycles is attributed to the passivation of zinc and the adsorption of 

solution ions.  There was a hysteresis of potential and deposition because the application 

time of the dissolution potential required would be steadily increasing between consecutive 

cycles to remove the disproportionately high deposited zinc. 

These electrochemical experiments were run again, but with argon gas bubbled 

through the solution to remove dissolved oxygen.  This resulted in the mass discrepancy 

being greatly reduced.   In the absence of oxygen, the dissolution and deposition was far 

more reversible. 
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This set of experiments suggest that, with all else being equal, dissolved zinc favors 

precipitation over dissolution.  Corrosion products that form are unlikely to re-dissolve into 

solution, meaning that their contribution to ECCS operations persists. 

2.2.3.2 Complexation 

Following the dissolution from its base metal, zinc will form aqueous complexes.  

Dissolved zinc exists in aqueous solutions as a hydrate complex in which the oxygen atoms 

from six water compounds are electrostatically attracted to the positively-charged zinc 

core, forming a geometrically octahedral complex.  As the dissolved zinc freely transports 

through the aqueous medium, complexed anions including hydroxide, carbonate, or 

phosphate may be present. 

The study of a method for removal of zinc from industrial waste water is presented 

[24].  Zinc is essential for human consumption, but sufficiently a sufficiently high zinc 

concentration in water supplies (100 mg/L) is toxic. There is a desire to treat zinc-rich 

industrial wastewater before disposal into natural water supplies.  If a similar treatment 

system may be applied to a post-LOCA environment, the effects of zinc may be greatly 

minimized. 

There are several methods by which zinc may be removed from a water supply.  

These methods include chemical separation, ion exchange, nanofiltration, ultrafiltration, 

reverse osmosis, and electrodialysis.  The principle disadvantages of these methods include 

inadequate selectivity, periodical batch processes, and high residual metal concentrations, 

among others. This article presents bounding agent complexants that have the ability to be 
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split from the zinc and regenerated for future use. The reference pH for these tests was >8, 

or an alkaline solution. 

Three complexation agents, including poly(ethylenimine) of various polymer 

lengths and poly(acrylic-acid) were applied to a zinc chloride solution before passing the 

complexes through several membrane filters.  The optimal complexant was found to 

poly(acrylic acid) with the complexation occurring at the carboxylic acid sites of multiple 

polymer subunits for each zinc ion removed. 

This complexation experiment has shown that a reusable polymer may be an 

effective method for zinc removal; however, its viability in a post-LOCA environment may 

be quite low.  Polymerized compounds may present more of a strain to ECCS operations 

than zinc corrosion products. 

2.2.3.3 Phosphating 

A hydrated zinc complex will remain suspended in solution until a thermodynamically 

favorable reaction with an anion become possible.  If the zinc and anion complexes 

electrostatically interact, they may precipitate to form new chemical compounds, such as 

zinc hydroxide, zinc oxide, zinc phosphate, or others.  The reaction of zinc with these 

anions may also create a nucleation site which may catalyze the continued precipitation of 

similar aqueous species.  A nucleation site may also be present on the surface of the original 

metallic zinc source. 

A major controlling factor in the precipitation and solubility of metals in solution 

is the reaction constant of solubility, of Ksp.  The Ksp values for relevant zinc compounds 
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are included in Table 3.  Zinc phosphate is the product that will most dominantly control 

the solubility of zinc.  

Table 3. Solubility product reaction constants for zinc compounds 

Compound Ksp 

zinc carbonate 1.4 x 10-11 

zinc borate 10-12 

zinc hydroxide 1.2 x 10-17 

zinc phosphate 9.0 x 10-33 

 

Corrosion inhibition properties of several commercial inhibitor paints have been 

studied [25].  Among these pigments are zinc phosphate, zinc-aluminum phosphate, zinc-

iron phosphate and zinc phosphomolybdate. 

For the research detailed in this article, extracts of the pigments were prepared 

under varying pH conditions.  Pigment extracts, once concentrated, were used as an 

electrolyte for studying carbon steel corrosion.  The pH values employed include 4.5, 7.0 

and 10.5.  The concentrations of zinc and phosphorus were measured as a means to 

qualitatively rank the inhibition powers of the extract.  By a significant margin, the most 

acidic condition (pH 4.5) resulted in the highest concentration of zinc, usually by an order 

of magnitude or more.  This is an intuitive result.  ICP-AES analysis of the solutions also 

show an inversely proportional relation between pH and solubility of zinc (i.e. low pH 

corresponds to high zinc concentration). 

After qualitative assessment of the inhibition power from concentration 

measurements were conducted, a series of tests were performed to validate the results.  A 

sample of carbon steel was exposed to a solution in which the pigment extracts served as 
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an electrolyte, and linear polarization measurements were made.  These polarization 

measurements, along with a reference measurement with sodium chloride, provided a 

percent inhibition power. 

The primary contribution of this publication is the finding that the solutions in 

which zinc- and phosphate-based extracts were applied to the carbon steel in an acidic 

solution resulted in the greatest relative corrosion inhibition power. 

 Phosphating studies have been performed on zinc [26], where a surface of zinc was 

dipped into a commercial zinc phosphate epoxy.  The zinc was then suspended in a solution 

of zinc phosphate and sodium chloride, and tested with an electrical potential.  The results 

are similar to the previous article in that the inhibition efficiency of the zinc phosphate 

corrosion layer was very high. 

A precondition for corrosion layer inhibition was that the leaching of base metal 

must achieve an adequately high concentration in solution.  This means that the zinc surface 

will not become passivated by zinc phosphate until sufficient zinc has released from the 

base metal, but also that the resulting passivation is a product of the zinc that had released 

in the first place.  This suggests that zinc phosphate is an excellent corrosion inhibitor 

because it does not require other elements or compounds to be present beyond zinc and 

phosphate. 

Self-healing protective films on a zinc surface have been studied [27].  A 

comparison between the respective corrosion resistance and self-healing capabilities of 

sodium phosphate is analyzed.  A zinc electrode was washed with a zinc phosphate solution 

to allow pre-test phosphating of the surface. The zinc surfaces were then scratched with a 
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knife-edge to expose the pure zinc base metal to corrosion agents.  These surfaces were 

then exposed to sodium chloride solution to test the corrosion protection properties. 

The results from this experiment have a strong implication on the corrosion 

passivating nature of zinc phosphate films.  The protective efficiency of the film was 

determined through electrochemical analysis, and was shown to increase as the zinc’s 

exposure time to sodium phosphate increased.  A significant observation from this research 

was that phosphates from the protective film migrated into the scratched surface, which 

was verified through electron microprobe.  This suggests that the zinc phosphate film that 

developed through the pre-test phosphating dissolved from the film, and that it was 

thermodynamically favorable to reattach to the pure zinc base metal, with the result of 

passivating further zinc corrosion.  In control tests where cerium nitrate was applied in 

place of sodium phosphate, there was no observed migration of the cerium phosphate to 

the scratched surface. 

These findings have shown that zinc phosphate will preferentially nucleate and 

grow on pure zinc surfaces, which will help passivate further zinc release.  In a post-LOCA 

scenario, this is a useful way to remove zinc from solution passively—without the need for 

operators to interfere.  Intuitively, increasing the surface area of zinc would create more 

nucleation sites for zinc phosphate precipitation; however, a greater surface area will also 

have the capability to supply more zinc to the system, which may outweigh the benefits.  

No discussion has been presented regarding the shear strength of the resulting zinc 

phosphate scale depositions, so the transportability of the zinc corrosion products is not 

assessed. 
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CHAPTER 3: MATERIALS AND METHODOLOGY 

The research performed is primarily focused to determine whether the sources of zinc in 

containment will destructively contribute to post-LOCA operations.  Destructive 

contributions are defined as any impact that zinc-based products have on LOCA mitigation 

efforts which are detrimental to designed and anticipated operations of the ECCS and any 

damage to structural or operational containment components. 

Sources of zinc include the materials onto which zinc is applied, such as galvanized 

steel and inorganic zinc primer-coated surfaces.  The mechanism considered for destructive 

contribution to post-LOCA operations is the obstruction of flow through ECCS 

recirculation pumps through the release of, or generation of, zinc-based chemical products.  

These chemical products include any chemical precipitate that bears zinc (e.g. zinc 

phosphate, zinc borate, zinc hydroxide), any secondary chemical products which contribute 

to the loss of safety and operations protocol (e.g. hydrogen gas generation from zinc 

oxidation), and any electrochemical degradation of the surfaces that zinc interacts with 

(e.g. iron become rust). 

3.1 Experimental Design 

Experimentation was performed as bench-top batch tests ( [28], [29], [30], [31], [32], [33], 

[34], [35], [36], [37]).  Bench-top batch tests in several testing series were conducted in 

chemically inert 1-liter Nalgene bottles.  Each of the testing bottles included 500 milliliters 

of testing solution and one source of zinc in the form of a solid coupon. 
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3.1.1 Testing Solution 

All batch tests had a similar composition of the two primary components: demineralized 

water and boric acid.  Each series was identified by a chemical addition that differed 

slightly from series to series.  Unique chemical additions included quantities of sodium 

hydroxide, hydrochloric acid, and/or trisodium phosphate. 

The baseline chemical solution for batch tests was designed to be representative of 

the reactor coolant.  Demineralized water was supplied through two separate sources: 

reverse osmosis membranes or successive steps of filtration and deionization.  The boric 

acid addition was calculated so that the total boron content was consistently held between 

2380 and 2390 ppm boron; this is equivalent to a 220 millimolar solution of boric acid. 

The strong base sodium hydroxide and the strong acid hydrochloric acid were 

included in select series to make adjustments to a baseline pH.  Sodium hydroxide was 

selected because it shares a common ion with the buffering chemical trisodium phosphate.  

Hydrochloric acid was selected because the generated ion, the chloride ion, may be found 

in containment as a radiolysis-generated chemical upon the degradation of electrical 

network and systems.  A base and an acid which were classified as “strong” were chosen 

to minimize the additional chemistry added to the solution.  A “weak” acid or base would 

require an addition of a greater inventory of the reagent to cause the same change in pH 

when compared with a “strong” acid or base. 

The containment buffering agent TSP was included in some tests. For tests which 

included TSP, it was added in one of three different methods: (1) TSP was added before 

testing in the baseline chemical solution at a constant concentration throughout testing, (2) 

coupons were exposed to un-buffered testing solution for a while, followed by TSP 
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addition that brought the buffer concentration up to the final limit in a single addition of 

TSP, and (3) testing solution was gradually brought up to the final limit of phosphate 

concentration through gradual additions of TSP doses during testing.  In the third method 

discussed above, trisodium phosphate was absent at the beginning of the test, and added 

incrementally to the testing solution to simulate buffer dissolution following the scenario 

after coolant breaches the walls of the bioshield and has come in contact with the buffer 

basket. 

3.1.2 Zinc Sources 

Zinc surfaces that were tested include coupons of one of three compositions: 99.6% pure 

zinc, carbon steel with inorganic zinc primer coating, or hot-dipped galvanized steel.  Each 

coupon was prepared by shearing a 1-inch square piece from a bulk metal sheet.  Coupon 

thicknesses ranged from 2/32 to 3/32-inches.  These dimensions result in a total surface 

area ranging from 14 to 15 square centimeters.  A 1/8-inch circular hole was drilled near 

the top edge of each coupon which was used to suspend the coupon in the testing bottle 

with nylon thread and maintain at a constant elevation in the testing solution. 

Pure zinc surfaces are not found in containment.  They have been included in this 

research in order to study the isolated chemical effects of zinc.  The other zinc sources—

galvanized steel and IOZ—also contain steel and other metals and chemicals.  The 

galvanized steel coupons are cut from a large sheet of galvanized steel, and the edges of 

the one-inch coupons have the underlying steel exposed.  While the contribution of this 
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exposed steel is expected to be low, it still represents roughly 15% of the total coupon 

surface area.  Therefore, some tests used pure zinc coupons to avoid additional chemistry. 

One series of tests tracked the integrated effects of zinc and aluminum.  Aluminum 

alloy 1100 coupons were prepared using the same methods and standards for zinc sources. 

3.1.3 Physical Testing Environment 

Batch tests were conducted in 1-liter Nalgene bottles, which served as the testing vessels.  

Each testing vessel kept the testing solution and sample in an air-tight and water-tight 

environment.  Testing vessels were maintained at a specific temperature using a hot-water 

bath.  The hot water bath temperature was maintained using a thermoregulator and coolant 

coils which were in conductive contact with the hot water bath.  The thermoregulator 

operates on a simple premise: an electrical current is applied to a coil which is in contact 

with the primary coolant; the heated coolant is pumped through pipes in the hot water bath, 

depositing thermal energy in the bath. 
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Figure 13. Hot bath with 1-liter Nalgene bottles 

 

The hot water bath is placed on an agitation table.  The agitation table was set to 

rotate at 75 revolutions per minute.  The agitation table was deemed necessary to promote 

mixing in the testing vessel, and to prevent concentration gradients from developing which 

may cause unrepresentative corrosion. 

3.1.4 Post-Testing Analyses 

Select coupons were examined by SEM and EDS.  Untested coupon samples were 

examined prior to exposure to the testing solution to serve as representative initial-

condition surfaces for comparison with samples following the completion of testing. 
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Measuring the concentration of zinc or other chemicals in solution is an analytical 

practice which, through careful inference, reveals phenomena including release rate, 

passivation, and precipitation.  Chemical concentration was measured by a third-party 

analytical laboratory using ICP.  The zinc content in all samples was measured, and other 

chemical were measured in select samples, such as iron in tests where galvanized steel was 

used as the source of zinc, and aluminum in the tests that included aluminum alloy 1100. 

3.1.5 Complete Testing Matrix 

Batch tests were organized by five distinct themes.  The themes of interest are as follows: 

(1) the release of zinc in borated acidic environment with no phosphate, which is termed 

“prompt release”, (2) release and corrosion with exposure to the containment buffer 

trisodium phosphate, (3) release and corrosion of zinc in a chemical environment 

simulating phosphate dissolution, (4) integrated release and corrosion characteristics of 

zinc and aluminum, and (5) descaling techniques for quantifying phosphate deposition by 

removing scale deposits. 

3.1.5.1 Theme 1 Tests: Prompt Release 

The first theme for testing was designed to replicate the early-stages of a developing 

LOCA.  For these tests, no trisodium phosphate buffer was introduced to the tests, in order 

to study the prompt zinc release effect [38].  Tests were planned with all three sources of 
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zinc at four temperatures and with durations up to 24 hours.  Six testing series were 

performed to study Theme 1. 

The first testing series was designed using pure zinc coupons as a zinc source 

(Series 1.1).  These tests were performed at 85°C, with durations spanning from 5 minutes 

to 24 hours. 

The second testing series was designed using IOZ as a zinc source (Series 1.2).  

These tests were also performed at 85°C, with durations spanning from 30 minutes to 2.5 

hours.  The scope of testing durations was reduced because of anticipated similarities 

between zinc source materials. 

The final four additional testing series were designed using galvanized steel as the 

source of zinc.  Each series employed a different operating temperature; these temperatures 

included 85°C (Series 1.3), 65°C (1.4), 45°C (1.5), and 25°C (1.6).  These four 

temperatures were selected with the expectation that a release correlation as a function of 

both time and temperature could be developed.  Durations spanned from 5 minutes to 24 

hours. 

3.1.5.2 Theme 2 Tests: Zinc Phosphate Solubility and Precipitation 

The second of the batch test themes was designed to simulate the long-term (beyond the 

first 24 hours) effects of zinc sources when exposed to phosphate-buffered coolant.  Tests 

were designed with pure zinc coupons and a baseline testing solution containing 0.22 molar 

boric acid and 10 millimolar trisodium phosphate, and were operated at 85°C; the resulting 

pH of this baseline solution was 7.3.  Seven testing series were performed that studied the 
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effects of altering one of the following testing conditions: zinc source, trisodium phosphate 

concentration, temperature, and pH.  The first testing series (Series 2.1) served as the 

baseline series, and was operated with each of the conditions listed above for durations 

spanning from 30 minutes to 10 days. 

In the second testing series (Series 2.2), the operating temperature was decreased 

to 60°C.  This adjustment was made to study the effect that cooling may have on the 

solubility and precipitation of zinc during the first few hours of a LOCA under buffered 

conditions.  Testing durations spanned 30 minutes to 2.5 hours. 

The concentration of trisodium phosphate was adjusted from 10 to 5.58 millimolar 

for the third testing series (Series 2.3).  As a result of the decrease of trisodium phosphate, 

the baseline pH dropped to 7.0.  The sponsoring utility for this research anticipates a 

minimum trisodium phosphate concentration of 5.58 millimolar.  Testing durations 

spanned 1 day to 5 days. 

Two additional series were designed to observe the effect of slight pH variations 

while holding the phosphate concentration constant at 10 millimolar.  The pH was 

decreased in one series by 0.5 pH units (down to pH 6.8) by adding hydrochloric acid 

(Series 2.4).  The pH was increased in the other series by 0.5 pH units (up to pH 7.8) by 

adding sodium hydroxide (Series 2.5).  Hydrochloric acid and sodium hydroxide are 

discussed in greater detail in Section 3.2.1.  Testing durations spanned from 30 minutes to 

10 days. 

The final two series of tests were designed to test alternate sources of zinc, 

including hot-dipped galvanized steel (Series 2.6), and IOZ (Series 2.7).  These tests were 

designed to study the similarities and differences between release rate, steady-state zinc 
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concentration, and changes in solution properties between the three zinc sources.  The 

testing duration spanned from 30 minutes to 10 days. 

3.1.5.3 Theme 3 Tests: Zinc Phosphate Formation with TSP Addition after Prompt 

Release Phase 

The third theme of interest for this research is simulating the dissolution of trisodium 

phosphate as it would occur during a LOCA.  The first theme studied the zinc release when 

no phosphate is added, and the second theme assumed a constant phosphate concentration 

from the start of testing.  This third theme connects the first two themes into experiments 

which are more representative of the events during a LOCA: (1) a period of time where 

zinc is exposed to un-buffered coolant and (2) followed by the dissolution and 

incorporation of phosphate into the coolant.  Fourteen series of tests were designed to 

explore this approach. 

The first two testing series that contribute to this testing theme simulated gradual 

dissolution and containment mixing of trisodium phosphate.  Trisodium phosphate was 

added to the testing vessel starting 20 minutes after the test began, and was added in three 

equal doses every 20 minutes for 60 minutes.  The total amount of trisodium phosphate 

added over the 60 minute window of time included 5.58 millimolar (Series 3.1) and 10 

millimolar (Series 3.2); one of these concentrations was used for each testing series.  These 

tests were held at a constant temperature of 85°C, and continued for a total of 24 hours.  

Pure zinc was the zinc source. 
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The final eight series of tests (3.3-3.10) differed from the first two series in that the 

total inventory of trisodium phosphate was introduced in one large dose, and the source of 

zinc was galvanized steel.  These tests are organized by two factors: (1) temperature and 

(2) whether the zinc source is present or absent following the addition of trisodium 

phosphate, which was added to a final concentration of 5.83 millimolar.  These were 

designed to see how zinc precipitation differs when the zinc source is proximal or absent. 

Hot-dipped galvanized steel coupons were exposed to un-buffered conditions to 

promote the prompt release of zinc, at four distinct temperatures: 85°C, 65°C, 45°C, and 

25°C, and for times spanning 5 minutes to 24 hours. Two series were run at each 

temperature.  These two series differed from each other by how the zinc source was treated 

following the addition of trisodium phosphate.  In one series, the galvanized steel coupon 

was removed from the testing vessel, while in the other series, the galvanized steel coupon 

remained in solution for the remainder of the test.  Following the addition of trisodium 

phosphate, the tests continued to a total of 48 hours. 

3.1.5.4 Theme 4 Tests: Zinc and Aluminum Integrated Effects 

The fourth theme for zinc experimentation includes the integrated effects that zinc sources 

may have with sources of aluminum in containment.  Aluminum is primarily found in 

containment in the following forms:  structural members, coatings, small components such 

as valves, and foil coatings on insulation [39].  The source of zinc in these tests was pure 

zinc. 
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One series of tests (Series 4.1) was designed to quantify the integrated release, 

corrosion, and precipitation effects of zinc and aluminum on each other.  In each test in the 

series, a coupon of aluminum alloy 1100 and a pure zinc coupon were suspended in the 

testing solution.  These coupons were suspended such that neither was in direct physical 

contact with the other; this precaution was necessary to eliminate galvanic reactions 

between the two metals. 

The testing solution was maintained at conditions similar to the baseline conditions 

from the first series of prompt release tests.  The testing solution temperature was held at 

85°C.  The concentrations of trisodium phosphate and boric acid were designed to be 10 

millimolar and 0.22 molar, respectively, resulting in a pH of 7.3.  Testing durations spanned 

from 5 hours to 5 days. 

The results of this testing series were compared with the results of previous 

experiments in which zinc and aluminum were tested in isolation.  Because of the identical 

physical and chemical conditions, the results from the first series of tests from Theme 2 

experiments were used as the baseline results for comparison with this series.  Previous 

experiments conducted under identical chemical and physical conditions will serve as a 

baseline for comparison for the response of aluminum when zinc is present, and those 

results will be provided with the discussion in Chapter 4. 

3.1.5.5 Theme 5 Tests: Chemical Descaling Methods to Quantify Scale Layer 

The final theme for testing explored several descaling methods for zinc surfaces.  These 

were designed to improve the analytical methods that were employed to quantify the 
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corrosion of- and release from- zinc sources, and the precipitation of chemical products 

back onto to coupon surface.  Four descaling solutions were applied to two zinc sources.  

The descaling solutions were found in [40] and [20], and include prescribed concentrations 

of ammonium persulfate (Series 5.1), ammonium chloride, ammonium acetate, and 

hydrochloric acid.  Select coupons from Series 2.1 (pure zinc) were repurposed following 

the conclusion of testing under Theme 2 conditions. 

The first decaling method [40] required 5 minutes of exposure to a solution of 100 

g/L of ammonium persulfate at 22°C. The second decaling method [40] required 5 minutes 

of exposure to a solution of 100 g/L of ammonium chloride at 70°C. The third decaling 

method [40] required 5 minutes of exposure to a solution of 100 g/L of ammonium acetate 

at 70°C. The fourth decaling method [20] required 10 seconds of exposure to a solution of 

1% hydrochloric acid at 22°C.  The descaling solutions were analyzed for total zinc 

content. 
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CHAPTER 4: EXPERIMENTAL RESULTS AND ANALYSIS 

4.1 Theme 1: Prompt Release 

The first testing theme studied the prompt release effects of zinc sources.  Table 4 shows a 

summary of the testing matrix.  Additional details for these tests are provided in Section 

3.1.5.1. 

Table 4. Theme 1 testing matrix 

Series Zinc Source Operating Temperature Testing Duration 

1.1 Pure Zinc 85°C 5 min. – 24 hrs. 

1.2 IOZ 85°C 30 min. – 2.5 hrs. 

1.3 Galvanized Steel 85°C 5 min. – 24 hrs. 

1.4 Galvanized Steel 65°C 5 min. – 24 hrs. 

1.5 Galvanized Steel 45°C 5 min. – 24 hrs. 

1.6 Galvanized Steel 25°C 5 min. – 24 hrs. 

4.1.1 Theme 1 Zinc Release Analysis 

Zinc release was measured through ICP by a third-party analytical laboratory, Hall 

Environmental Analytical Laboratory (HEAL).  Figure 14 shows the zinc release results 

for all tests from Series 1.1 1.2, and 1.3, which were all conducted at 85°C. 
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Figure 14. Prompt release at 85°C 

 

The prompt release from Series 1.1-1.3 displayed in Figure 14 show that, even 

across the three sources of zinc, the release is consistent.  The widest experimental 

variability exists at 4 hours, with a range of 9 mg/L. 

A notable observation from this series is the apparent saturation limit that is 

achieved by the eighth hour of testing by both galvanized steel and pure zinc sources.  This 

saturation limit is 27 mg/L for pure zinc and 28 mg/L for galvanized steel; this difference 

is within the observed experimental variability during the earlier sampling times.  The 

solubility is likely controlled by zinc borate species (Figure 3).  The prompt release period 

in these tests, through the fourth hour, is shown in Figure 15. 
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Figure 15. Prompt release at 85°C, first four hours 

 

A linear trend for zinc release from all three sources is overlaid with the data from 

the first four hours of Series 1.1-1.3 in Figure 15.  An average release rate of 6.3 mg/L per 

hour is observed, with a coefficient of determination of 0.86.  This confirms that zinc 

continues to release from the zinc-bearing source at a consistent and predictable rate.  This 

release rate is an average of all three zinc sources.  It will be shown later during the analysis 

of the galvanized steel tests that the release is dependent on the zinc source and 

temperature. 

The prompt release model shown above is useful for environments which are 

maintained at 85°C.  Many LOCA environments will not remain at 85°C, so it is therefore 

useful to see how the saturation limit of released responds to different temperatures.  The 

saturation limit is a useful quantity to establish how much dissolved zinc is available for 

chemical and physical reactions, such as precipitation, which is discussed in greater detail 

with the discussion of Theme 2 testing results where phosphate has been added. 
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Zinc release and the concentrations from Series 1.3, 1.4, 1.5, and 1.6 demonstrate 

the response that the dissolved zinc saturation limit has when the testing solution 

temperature is adjusted.  These results are shown in Figure 16. 

Figure 16. Saturation limit response to temperature with galvanized steel 

 

The concentration results from Series 1.3, 1.4, 1.5, and 1.6 show that the saturation 

limit of zinc does respond to temperature.  Most chemicals respond to increasing 

temperatures with an increase in solubility.  Dissolved zinc is displaying retrograde 

solubility, where an increase of temperature results in a decrease in solubility.  Table 5 
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shows the release rate, observed saturation time boundaries, saturation limit, and the 

calculated saturation time.  The surface-area normalized release rate is included, assuming 

a zinc surface area of 2 square inches (12.9 square centimeters) 

Table 5. Series 1.3-1.6 summary of dissolved zinc concentration measurements 

Testing 

Series and 

Temperature 

(°C) 

Release 

Rate 

(mg/L 

per hr.) 

Surface-

Normalized 

Release Rate 

(mg/L*hr*cm2) 

Observed  

Saturation  

Time (hrs.) 

Saturation  

Limit 

(mg/L) 

Saturation  

Time from the 

Release Rate 

(hours) 

1.3 (85°C) 3.5  0.27 4 < t < 8  28  8  

1.4 (65°C) 4.0  0.31 8 < t < 16  44  11  

1.5 (45°C) 4.5  0.35 16 < t < 24 76  17  

1.6 (25°C) 4.7  0.36 ≥ 24 ≥ 120  N/A 

 

 The estimated saturation times and the saturation limits for Series 1.3, 1.4, and 1.5 

follow a predictable trend as a function of absolute temperature, as shown in Equation 8 

and Equation 9.  These equations are second-order polynomial fits of the data from Table 

5 for Series 1.3, 1.4, and 1.5. 

Equation 8. Time to saturation for prompt release as a function of absolute temperature 

𝑇𝑖𝑚𝑒 𝑡𝑜 𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (ℎ𝑟𝑠) = 0.02𝑇(𝐾)2 − 14.72𝑇(𝐾) + 2734.48 

Equation 9. Saturation limit for prompt release as a function of absolute temperature 

𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝐿𝑖𝑚𝑖𝑡 (𝑚𝑔/𝐿) = 0.00375𝑇(𝐾)2 − 2.76𝑇(𝐾) + 515.465 

These equations for Series 1.3 through 1.5 may be extrapolated to the temperature 

of Series 1.6 to estimate the true saturation time and saturation limit.  By applying Equation 
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8 and Equation 9 to the temperature of Series 1.6, the saturation time is estimated to be 26 

hours, and the saturation limit is 124 mg/L.  Both of these calculated values are within the 

range permitted, as shown in Table 5. 

Equation 8 and Equation 9 are only physically meaningful in temperatures ranging 

from 273 K to 373 K (0°C to 100°C).  Beyond this range, the solution experiences a phase 

away from a liquid state, which makes aqueous expressions such as concentration 

meaningless. 

The arrival to the saturation limit in these series corresponds with a surface oxide-

scale layer development, which is discussed in greater detail in Section 4.1.4. 

The hot-dipped galvanized steel surfaces have from 10 to 50 micrometers of zinc 

coating on the surface.  An important question to ask is whether the highest saturation limit 

(124 mg/L) may correspond with complete removal of the galvanized layer.  If the 

underlying steel is exposed, additional iron-based corrosion products may contribute to 

ECCS operations. 

To calculate whether 124 mg/L represents the whole inventory of zinc on the 

surface, some conversions are first necessary.  A concentration of 124 mg/L is equivalent 

to 124 milligrams per liter.  Each testing vessel had one-half liter of testing solution, and 

each galvanized steel coupon had two square inches of zinc coating.  The calculation for 

how much mass was lost per unit area is shown in Equation 10. 
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Equation 10. Mass of zinc lost per unit area on galvanized steel 

124 𝑝𝑝𝑚 = 124
𝑚𝑖𝑙𝑙𝑖𝑔𝑟𝑎𝑚𝑠

𝐿
×

0.5 𝐿

𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡
×

𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡

2 𝑖𝑛2 𝑧𝑖𝑛𝑐
= 31

𝑚𝑖𝑙𝑙𝑖𝑔𝑟𝑎𝑚𝑠

𝑖𝑛2 𝑧𝑖𝑛𝑐
 

Equation 10 has shown the maximum amount of zinc that will be lost from one 

square inch of a galvanized steel surface is 31 milligrams.  This equation is converted to a 

surface depth in Equation 11 by applying the density of metallic zinc. 

Equation 11. Calculation for maximum thickness of zinc layer lost during prompt release 

31
𝑚𝑔 𝑧𝑖𝑛𝑐

𝑖𝑛2 𝑧𝑖𝑛𝑐
×

𝑐𝑚3 𝑧𝑖𝑛𝑐

7140 𝑚𝑔 𝑧𝑖𝑛𝑐
×

1 𝑖𝑛2

6.452 𝑐𝑚2
= 0.0006729 𝑐𝑚 ≈ 6.7 𝑚𝑖𝑐𝑟𝑜𝑚𝑒𝑡𝑒𝑟𝑠 

These calculations have shown that under the conditions that promote the greatest 

release of zinc from the galvanized steel surface, a substantial amount of zinc will remain 

as a coating on the galvanized steel.  By assuming the thinnest expected zinc layer coating 

(10 micrometers) and the highest zinc concentration (124 mg/L), there is still more than 

three micrometers of zinc remaining on the surface. 

Series 1.3, 1.4, 1.5 and 1.6 were conducted with galvanized steel coupons, so 

analysis on dissolved iron concentration may be useful to determine the effectiveness of 

the galvanic shielding that zinc provides.  Released iron measurements are included in 

Figure 17. 
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Figure 17. Theme 1 iron release 

 

Figure 17 shows that iron is released from the galvanized steel coupon at a 

reasonably predictable rate.  Initially, iron is released in a linear rate.  The dissolved iron 

concentration also seems to approach a saturation limit of 1.4 mg/L by the twenty-fourth 

hour of testing.  ICP analysis does not resolve between divalent or trivalent iron species.  

This observed passivation of iron release may be attributed to the galvanic protection that 

zinc provides. 

In the first four hours of testing, iron is released at a linear rate of 0.24 mg/L per 

hour, with a coefficient of determination of 0.88.  If this iron release rate is extrapolated to 

the twenty-fourth hour, the expected dissolved iron concentration is over 5.7 mg/L.  

However, the maximum iron concentration measured in the first twenty four hours is only 

1.4 mg/L, which confirms that some passivation mechanism is in effect.  The ratio of 

expected iron release and the observed iron release is roughly 4.  The suspected mechanism 

for iron passivation is zinc’s cathodic protection. 
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4.1.2 Theme 1 Turbidity Analysis 

Turbidity is a useful analytical technique to qualitatively assess solution clarity.  A Hach™ 

2100P Turbidimeter was used to measure solution turbidity with the standard unit of 

Nephelometric Turbidity Units (NTU).  Turbidity measurements from Series 1.3-1.6 is 

shown in Figure 18. 

Figure 18. Solution turbidity for Series 1.3, 1.4, 1.5, and 1.6 

 

These turbidity results display interesting behavior.  For the series operated at the 

highest temperature (Series 1.3, 85°C), the turbidity is highest, and approaches a value of 

28 NTU by the twenty-fourth hour of testing.  The next highest turbidity values correspond 

to the series operate at the lowest temperature (Series 1.6, 25°C), and remains at a stable 

value around 20-21 NTU.  The remaining two series have turbidity values which are 

roughly equivalent, within a range of 7-11 NTU. 



www.manaraa.com

58 
 

Solution turbidity is a good indicator of dissolved zinc at 85°C, but a poor indicator 

of dissolved zinc at lower temperatures (Figure 19).  A ratio between turbidity (in NTU) 

and concentration (in mg/L) is graphically expressed.  For a concentration to be accurately 

represented by a measured turbidity, the ratio must remain consistent.  This analysis may 

prove to be a useful technique for estimating zinc concentration in an economical and rapid 

manner. 

Figure 19. Theme 1 turbidity to concentration ratio 

 

This analysis has shown that the turbidity to concentration ratio is only useful for 

the tests that were operated at 85°C.  For Series 1.3, the percent deviation from the average 

turbidity is only 15%, but the other series have average with higher standard deviations.  

These values are shown in Table 6. 
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Table 6. Summary of turbidity-to-concentration ratio in Series 1.3 through 1.6 

Series Temperature (°C) 

Average Turbidity to 

Concentration Ratio 

Percent 

Standard Deviation 

1.3 85 1.0 15% 

1.4 65 0.23 126% 

1.5 45 0.31 58% 

1.6 25 0.29 93% 

 

4.1.3 Theme 1 pH Analysis 

Knowing the pH of a solution is a useful way of determining the relative corrosivity or 

causticity of a solution. All series in Theme 1 have initial chemistry that includes 220 

millimolar boric acid, which naturally achieves a pH value of 4.5.  The trends in pH through 

the course of testing is shown in Figure 20 for all tests exposed to 85°C testing solution. 

Figure 20. Theme 1 testing solution final pH  
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Three trends in pH have emerged from this analysis.  The first of these trends may 

be seen during the initial period through the fourth hour of testing, where the pH is steadily 

and consistently increasing.  The second trend is the gradual approach to a final pH value 

from the fourth hour to the twenty-fourth hour.  The third trend is that the pH of the 

galvanized steel solutions is consistently higher than the pH of pure zinc tests; there is not 

enough data to conclude this for the IOZ solutions. This steady-state pH limit value is 

unique between the two sources for which this data exists, with pure zinc tests approaching 

pH 5.8 and galvanized steel tests approaching pH 6.3.   

The general increase in pH is attributed to the consumption of hydronium by zinc 

as it dissolves (Equation 3).  The difference between pH values for galvanized steel and 

pure zinc may be attributed to the presence of iron (Figure 17). As iron corrodes in acidic 

media, hydronium is consumed (Equation 4) in the same manner as it is for zinc, which 

increases the pH. 

4.1.4 Theme 1 Surface Composition Analysis 

EDS is a powerful tool to identify surface chemical composition.  Spectral data is 

available for Series 1.3, 1.4, 1.5, and 1.6, and is shown in Table 7, Table 8, Table 9, and 

Table 10.  These testing series contained galvanized steel zinc source in borated solution. 



www.manaraa.com

61 
 

Table 7. Series 1.3 (galvanized steel) EDS spectral results in atomic percentage (%) 

Testing Duration Zinc Oxygen Aluminum Iron 

5 min. 100     

30 min. 100     

1 hr. 100     

4 hrs. 79.11 20.89    

8 hrs. 73.28 26.72    

16 hrs. 77.62 22.38    

24 hrs. 25.25 57.92 2.22 14.6 

 

Table 8. Series 1.4 (galvanized steel) EDS spectral results in atomic percentage (%) 

Testing Duration Zinc Oxygen 

5 min. 100   

30 min. 100   

1 hr. 100   

4 hrs. 100   

8 hrs. 71.24 28.76 

16 hrs. 75.2 24.8 

24 hrs. 73.01 26.99 
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Table 9. Series 1.5 (galvanized steel) EDS spectral results in atomic percentage (%) 

Testing Duration Zinc Oxygen Aluminum 

5 min. 100    

30 min. 100    

1 hr. 100    

4 hrs. 100    

8 hrs. 100    

16 hrs. 61.63 38.37   

24 hrs. 53.51 38.21 8.28 

 

Table 10. Series 1.6 (galvanized steel) EDS spectral results in atomic percentage (%) 

Testing Duration Zinc Oxygen Aluminum 

5 min. 100    

30 min. 100    

1 hr. 100    

4 hrs. 100    

8 hrs. 100    

16 hrs. 100    

24 hrs. 66.43 24.24 9.34 

 

The galvanized steel coupons experience a dramatic change in elemental surface 

composition over the course of the testing duration.  Through the first hour of testing, all 

of the galvanized steel surfaces maintain their pure zinc surface layer. 

A zinc oxide layer develops on the surface as a function of temperature and time, 

starting at the fourth hour of testing in the testing series with the hottest solution.  This 

oxide layer development corresponds with the saturation limit, discussed in Section 4.1.1.  
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The galvanized steel coupon surface becomes oxidized just before the solution reaches a 

saturation limit. 

In Series. 1.3, solution saturation is achieved between the fourth and eighth hour 

(Table 5), and the surface composition includes high quantities of zinc and oxygen 

(presumably zinc oxide) by the fourth hour.  In Series 1.4, a similar trend is observed: 

saturation is achieved between the eighth and sixteenth hour, and a surface oxide layer 

develops by the eighth hour.  This trend is similarly observed for the other two series as 

well, where an oxide layer develops just before solution saturation. 

The presence of aluminum and iron on the surface of the galvanized steel coupons 

has a simple explanation.  Iron is a major component of galvanized steel, and aluminum 

may be a product of the underlying steel alloy corrosion.  Iron is only present in the twenty-

four hour sample in the hottest solution (Series 1.3), and absent from all other EDS 

spectrums; therefore, it is assumed that the galvanic protection on a sample of galvanized 

steel is compromised after twenty-four hours of exposure to 85°C borated coolant.  Under 

such conditions, the iron-based corrosion products may also contribute to the local 

chemistry of the post-LOCA environment, adding to sump head loss and additional 

corrosion effects. 

4.1.5 Theme 1 Qualitative Imaging Analysis 

SEM imaging is often used to qualitatively assess surface structures and surface 

cleanliness.  Surface imaging, taken at 1000 times magnification, is available for select 

tests from Series 1.1 (Figure 21 and Figure 22) and Series 1.6 (Figure 23, Figure 24, and 
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Figure 25).  The scale on each image is 50 microns.  A clean, untested coupon has been 

included for reference. 

Figure 21. Series 1.1 SEM images, part 1/2 

  

Untested surface 5 min. prompt testing 

Figure 22. Series 1.1 SEM images, part 2/2 

  

4 hrs. prompt testing 24 hrs. prompt testing 

 

The SEM images from Series 1.1 reveals a surface texture change as a function of 

time.  In the first five minutes of testing, the pure zinc coupon experiences slight pitting 
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and surface erosion, though these effects are not greatly pronounced.  After four hours of 

exposure to boric acid, the zinc surface is exhibiting a much wider range of pitting and 

corrosion, with a majority of the surface experiencing some degree of destruction.  By the 

twenty-fourth hour of exposure, the surface wear has become very pronounced, and the 

pitting and corrosion has started to penetrate to deeper surface levels than for shorter testing 

durations. 

Figure 23. Series 1.6 SEM images, part 1/3 

  

Galvanized steel, 5 min. prompt testing Galvanized steel, 1 hr. prompt testing 
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Figure 24. Series 1.6 SEM images, part 2/3 

  

Galvanized steel, 4 hrs. prompt testing Galvanized steel, 8 hrs. prompt testing 

 

Figure 25. Series 1.6 SEM images, part 3/3 

  

Galvanized steel, 16 hrs. prompt testing Galvanized steel, 24 hrs. prompt testing 

 

The samples in Figure 23, Figure 24, and Figure 25 show the evolution of surface 

corrosion and dissolution on galvanized steel coupon exposed to boric acid at 25°C (Series 

1.6).  Similar to the Series 1.1 SEM imaging, Series 1.6 images show a progression of 

surface dissolution as a function of time.  After five minutes of testing, the surface shows 
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clustered pitting.  These pits are the source of zinc that was measured and discussed in 

Section 4.1.1.  The pitting has grown by the thirtieth minute of testing to reveal larger 

swaths of dissolved zinc.  This effect is progressively more pronounced through the 

remainder of testing durations. 

An interesting transition occurs at the sixteenth hour of testing.  Here, the large 

swaths of corroded surface layers have merged into an increasingly large pit.  At the 

twenty-fourth hour, the surface begins to break down further, losing any real coherent 

structure.   EDS analysis confirmed that the underlying steel layers were not detected for 

these tests. 

A curious feature of the removal of surface layers is the revelation of hexagonal 

pitting formations.  This is especially pronounced in the sixteen-hour test.   This hexagonal 

pitting is attributed to the hexagonal close packed crystal structure of metallic zinc.  

However, these hexagonal pitting structures are only present in galvanized steel coupon 

samples; none were discovered in pure zinc coupons for tests in any Theme.  It is therefore 

presumed that the hexagonal wear is either an artifact of the hot-dipping process for 

galvanized steel coupons, or obscured by trace metal additions in the pure zinc alloy, which 

is 99.6% pure. 

4.2 Theme 2: Zinc Phosphate Solubility and Precipitation 

The second testing theme studied the interaction of containment zinc sources with a coolant 

solution that is buffered by TSP, and how the release and corrosion are effected by the 
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presence of the buffer.  Table 11 shows a summary of the testing matrix.  Additional details 

for these tests are provided in Section 3.1.5.2. 

Table 11. Theme 2 testing matrix 

Series 

Zinc 

Source TSP 

Operating 

Temperature 

Baseline 

pH Testing Duration 

2.1 Pure Zinc 10 mM 85°C 7.3 30 min. – 10 days 

2.2 Pure Zinc 10 mM 60°C 7.3 30 min. – 2.5 hrs. 

2.3 Pure Zinc 5.58 mM 85°C 7.0 24 hrs. – 5 days 

2.4 Pure Zinc 10 mM 85°C 6.8 30 min. – 10 days 

2.5 Pure Zinc 10 mM 85°C 7.8 30 min. – 10 days 

2.6 Galvanized Steel 10 mM 85°C 7.3 30 min. – 10 days 

2.7 IOZ 10 mM 85°C 7.3 30 min. – 10 days 

4.2.1 Theme 2 Zinc Release Analysis 

Zinc release was measured through ICP by HEAL, as described in Section 4.1.1.  Figure 

26 shows the zinc release results for all tests from Series 2.1, which were conducted at 

85°C and with 10 millimolar TSP concentration. 
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Figure 26. Series 2.1 zinc release 

 

From this series of testing, a few general trends in zinc dissolution become evident.  

The first trend is that through the first 2.5 hours of testing, the dissolved zinc concentration 

is consistently increasing.  The second trend begins at the fifth hour, and continues until 

the testing was completed at the tenth day.  Here, the dissolved zinc concentration tended 

to vary greatly.  At the twenty-fourth hour, the range of concentrations spanned from 0.23 

mg/L to 0.77 mg/L, but are nevertheless bounded in the 0.2 to 0.8 mg/L range. 

The final trend is the expression of competing mechanisms throughout the duration 

of testing.  These mechanisms are the dissolution of zinc from the metallic coupon and the 

removal of zinc from solution via precipitation.  In the first 2.5 hours of testing, release is 

the dominant mechanism for zinc activities; however, at later times, there is a release-

precipitation equilibrium that has begun to be established. 

Another trend of note is the magnitude of the zinc concentration in solution.  For 

all durations, the concentration of zinc in solution is bounded by 0.1 mg/L and 0.8 mg/L, 
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which is markedly lower than the concentration of dissolved zinc as seen in the un-buffered 

tests from Theme 1.  A concentration of 1 mg/L dissolved zinc was achieved—and 

surpassed—within the first thirty minutes of testing in all series from Theme 1 tests, and 

the concentration after twenty-four hours reached as high as 120 mg/L. 

This stark difference in concentration may be attributed to several factors, 

including, but not limited to, the presence of trisodium phosphate buffer and the pH of the 

testing solution.  The saturation limit of dissolved zinc under these conditions may be 

inferred from this data to be roughly 0.8 mg/L.  This compares reasonably well with the 

solubility limit calculated in Chapter 2, which was approximately 0.1 mg/L. 

Series 2.2 was designed to show how zinc dissolution responds to a temperature 

change, similar to the objectives of Theme 1 tests in Series 1.3, 1.4, 1.5, 1.6, but on a 

reduced scale.  The concentration measurements from Series 2.2 are overlaid on the results 

of Series 2.1 in Figure 27, below. 

Figure 27. Series 2.2 zinc release 
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The measured zinc concentration results from Series 2.2 have shown that dissolved 

zinc concentration follows a pattern of retrograde solubility.  This is a similar result to what 

was observed with Series 1.3 through 1.6 in Theme 1 testing (Section 4.1.1).  With all 

available data at each available testing duration, the concentration of dissolved zinc in 

Series 2.2 is greater than the concentration measured in Series 2.1. 

There is insufficient data to determine the saturation limit under these conditions.  

The retrograde solubility behavior of zinc would indicate that as the temperature decreases 

further, the solubility limit of dissolved zinc should continue to increase.  This is observed 

in Series 2.1. 

To test the effect that a different concentration of trisodium phosphate would have 

on zinc release and solubility, Series 2.3 was designed. The tests in Series 2.3 were 

conducted with 5.58 millimolar TSP.  This change in TSP concentration resulted in a pH 

shift from 7.3 (10 mM TSP) to 7.0 (5.58 mM); this will be discussed in more detail in 

Section 4.2.3. The concentration measurements from Series 2.3 are overlaid on the results 

of Series 2.1 in Figure 28, below. 
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Figure 28. Series 2.3 zinc release 

 

The measured zinc concentration for Series 2.3 testing shown that the results are 

not strongly influenced by either 10 or 5.58 millimolar TSP concentrations.  This is a 

predictable conclusion, because trisodium phosphate is present in a great excess in either 

case.  The phosphate concentrations of 5.58 and 10 millimolar are equivalent to 530 mg/L 

and 950 mg/L phosphate, respectively.   The limiting reactant in zinc phosphate 

formation—the primary mechanism to remove zinc from solution using phosphate—is 

dissolved zinc.   

An observation of note is that the concentration of dissolved zinc in Series 2.3 tends 

to be toward the lower limit of zinc concentration from Series 2.1.  There is insufficient 

data to resolve this potential trend conclusively.  One possible explanation may be that this 

observation is an artifact of the lower solution pH in Series 2.3. 

Additional tests were performed in Series 2.4 and 2.5 to investigate the effect of 

changing the pH without altering the TSP concentration.  Hydrochloric acid (HCl) and 
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sodium hydroxide were used to lower or raise the pH by 0.5 units in Series 2.4 and 2.5, 

respectively.  These series are discussed in greater detail in Section 3.1.5.2.  The 

concentration measurements from Series 2.4 and 2.5 are overlaid on the results of Series 

2.1 in Figure 29, below. 

Figure 29. Series 2.4 and 2.5 zinc release 

 

The measured zinc concentration for Series 2.4 and 2.5 testing show that the results 

are not strongly influenced by a pH shift of 0.5 units.  For testing durations up to, and 

including, 5 days, the zinc concentration in Series 2.4 is greater than the dissolved zinc 

concentration in Series 2.5, through both also tend to be within the range established with 

Series 2.1 tests at pH 7.3.  For tests with durations of ten days, there is a high degree of 

variability in the measured dissolved zinc concentrations.  As discussed previously, this 

effect may be attributed to the competing mechanisms of dissolution and precipitation. 
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The final two series of Theme 1 testing were designed to see if the results found 

with pure zinc tests are comparable to the sources of zinc found in containment: IOZ and 

galvanized steel.  The concentration measurements from Series 2.6 and 2.7 are overlaid on 

the results of Series 2.1 in Figure 30, below. 

Figure 30. Series 2.6 and 2.7 zinc release 

 

The measured zinc concentration for Series 2.6 and 2.7 testing show that the results 

are not strongly influenced by the source of zinc.  For testing durations up to, and including, 

5 days, the zinc concentration in Series 2.7 is greater than the dissolved zinc concentration 

in Series 2.6, through both also tend to be within the range established with Series 2.1 using 

pure zinc coupons.  There are two testing durations for which the release from Series 2.7 

exceeds the release from pure zinc coupons—at 2.5 hours and at 5 days—however, the 

measured dissolved zinc concentration is still bounded by the limits establish by Series 2.1: 

0.1 mg/L and 0.8 mg/L. 
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The measured concentrations for all tests in Theme 1 series are included in Figure 

31. 

Figure 31. Theme 2 series zinc release 

 

4.2.2 Theme 2 Turbidity Analysis 

Turbidity data for Theme 2 tests is available from select tests in Series 2.1 and 2.6.  

These turbidity measurements are shown in Figure 32.  An interesting trend that has 
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emerged from this analysis is that the turbidity measurements (in NTU) is bounded by the 

same limits that dissolved zinc concentration was bounded by (in mg/L).  These bounds 

are 0.1 NTU and 0.8 NTU. 

 

Figure 32. Theme 2 turbidity 

 

These results suggest that solution turbidity may be a good indicator for dissolved 

zinc, as was the case for Series 1.3 in Theme 1 testing.  A ratio between turbidity (in NTU) 

and concentration (in mg/L) is graphically expressed in Figure 33, similar to what was done 

for Series 1.3-1.6 in Section 4.1.2. 
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Figure 33. Theme 2 turbidity to concentration ratio 

 

This analysis has shown that the turbidity to concentration ratio is only useful for 

the tests in Series 2.1, which had pure zinc as the zinc source. This analysis is most useful 

when the turbidity to concentration ratio tends toward 1.  Additional analysis of this data 

may be found in Table 12. 

Table 12. Summary of turbidity-to-concentration ratio in Series 2.1 and 2.6 

Series 

Zinc 

Source 

Duration 

(hours) 

Average Turbidity to 

Concentration Ratio 

Percent  

Standard Deviation 

2.1 Pure Zinc All 0.98 31% 

2.6 Galvanized Steel All 0.35 45% 

 

The analysis in Table 12 has shown that using a turbidity measurement to estimate 

dissolved zinc is more useful with a pure zinc source than for a galvanized steel source. 
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4.2.3 Theme 2 pH Analysis 

All series in Theme 2 have initial chemistry which includes 220 millimolar boric acid and 

either 5.58 or 10 millimolar TSP, which naturally settles at a pH value of 7.0 to 7.3.  Series 

2.4 and 2.5 have pH adjusting chemicals (HCl or NaOH) which adjusts this natural pH 

value by 0.5 pH units.  The trends in pH through the course of testing are shown in Figure 

34 for all tests. 

Figure 34. Theme 2 final pH measurements 
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Tests with an initial pH of 7.3, which include Series 2.1, 2.2, 2.6 and 2.7, will be 

analyzed separate from the other series.  The final pH of these tests remains within the pH 

bounds of 7.1 and 7.55 for all testing durations, with most of the tests remaining between 

7.2 and 7.4.  The observed fluctuations are within +/- 0.2 pH units of the initial pH, and 

may be attributed to the stochastic behavior of the chemical environment, or attributed to 

the measuring sensitivity of the pH meter used. 

Series 2.3 tests had an initial pH of 7.0.  When the pH was sampled after 24 hours 

of testing, the pH remained within 0.1 pH units of the initial pH.  After 5 days of testing, 

however, a consistent drop in the pH to a range of 6.80 to 6.85 was observed.  The drop in 

pH may be attributed to the reduced buffering capacity of phosphate upon its consumption 

while forming zinc phosphate precipitate. 

Series 2.4 and 2.5 has initial solution pH values of 6.8 and 7.8, respectively.  Series 

2.4 (pH 6.8) saw an increase in pH by 0.1 to 0.2 pH units.  Series 2.5 (pH 7.8) tended to 

remain very close to the initial pH, remaining within 0.05 pH units of the initial pH.  In all 

series, the buffering capacity of phosphate is shown.  Large changes in pH were observed 

in Theme 1 testing (Section 4.1.3), when no phosphate was present. 

4.2.4 Theme 2 Surface Composition Analysis 

Spectral data from EDS analysis is available for select tests in Series 2.1, 2.3, and 2.6.  The 

matrix of available data is outlined in Table 13.  The available EDS spectral data is shown 

in Table 14. 
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Table 13. Available EDS spectral results for Theme 2 testing 

Series 

Zinc 

Source TSP 

testing 

Temperature 

Baseline 

pH 

EDS Spectrum Available 

For Testing Durations 

2.1 Pure Zinc 10mM 85°C 7.3 2.5 hours, 24 hours, 10 days 

2.3 Pure Zinc 5.58mM 85°C 7.0 24 hours, 5 days 

2.6 Galvanized 

Steel 

10 mM 85°C 7.3 2.5 hours, 10 days 

Table 14. Theme 2 EDS spectral results in atomic percentage (%) 

Testing Series Testing Duration Zinc Oxygen Phosphorus Aluminum 

2.1 2.5 hours 72 24 3.4  

2.1 24 hours 40 52 8  

2.1 10 days 24 58 17  

2.3 24 hours 36 49 12  

2.3 5 days 34 53 12  

2.6 2.5 hours 70 25 1.8 1.4 

2.6 10 days 19 58 8.5 2 

 

To show the progression of surface scale development, the spectral results are 

shown in Figure 35, Figure 36, and Figure 37. 
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Figure 35. Series 2.1 (pure zinc) EDS spectral results 

 

Figure 36. Series 2.3 (pure zinc) EDS spectral results 
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Figure 37. Series 2.6 (galvanized steel) EDS spectral results 

 

A few trends of note have emerged from the spectral analysis.  In Series 2.1 (Figure 

35), the decreasing surface composition of zinc corresponds with an increase in surface 

composition of both phosphorus and oxygen.  This has shown that as exposure time to the 

solution increases, more zinc phosphate product precipitates onto the surface.  This 

corresponds with the zinc concentration data in Section 4.2.1, which shows that the average 

dissolved zinc concentration decreases from the twenty-fourth hour to the tenth day of 

testing.  The decrease in concentration is therefore attributed to zinc phosphate 

precipitation, and nucleation on the surface of the original zinc coupon. 

In Series 2.3 (Figure 36), the surface composition between the twenty-fourth hour 

and fifth day of testing remains essentially constant.  This leads to the conclusion that 

precipitation of phosphate-bearing chemical products onto the surface of the coupon ceases 

by the twenty-fourth hour of testing.  The dissolved zinc concentration data was insufficient 

to conclusively determine a trend in zinc concentration; however, this EDS analysis 



www.manaraa.com

83 
 

confirms that if additional zinc precipitation occurs beyond the twenty-fourth hour, the 

precipitation products remain in solution, either suspended or as a solid product. 

In Series 2.6 (Figure 37), a trend similar to what was observed with Series 2.1 is 

seen.  From the first 2.5 hours of testing through the tenth day of testing, the decreasing 

surface composition of zinc corresponds with an increase of both phosphorus and oxygen.  

This again suggests that zinc phosphate precipitation products are nucleating on the 

original galvanized steel coupon.  The presence of trace aluminum has been discussed in 

Section 4.1.4—aluminum may be a product of the decomposition of the underlying steel 

in the galvanized steel coupons. 

4.2.5 Theme 2 Qualitative Imaging Analysis 

Surface imaging from SEM analysis is available for select tests in Series 2.1 and 

2.3.  All Theme 2 surface imaging was performed at 1000 times magnification, and is found 

in Figure 38 and Figure 39. 
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Figure 38. Series 2.1 SEM images 

  

Pure zinc, 24 hrs. testing, 10 mM TSP Pure zinc, 5 days testing, 10mM TSP 

 

Figure 39. Series 2.3 SEM images 

  

Pure zinc, 24 hrs. testing, 5.58 mM TSP Pure zinc, 5 days testing, 5.58 mM TSP 

 

Figure 38 and Figure 39 show that the scale layers on the zinc coupon samples 

continue to develop through the fifth day.  In both series, which are defined by the 

concentration of TSP added to the testing solution, the samples begin with small, isolated 

scale deposits.  By the fifth day of testing, the isolated scale deposits have merged and 
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grown into larger scale structures.  EDS spectral results have shown the identity of these 

scale deposits to be primarily comprised of zinc, phosphorus, and oxygen, likely zinc 

phosphate. 

4.3 Theme 3: Zinc Phosphate Formation with TSP Addition after 

Prompt Release Phase 

For the tests in the third testing Theme, the concepts of the first two themes were combined.  

Sources of zinc were exposed initially to borated, unbuffered, testing solutions.  After a 

prescribed duration, TSP buffer was added to the solution.  Table 15 shows a summary of 

the testing matrix.  Table 16 describes the three TSP addition techniques.  Additional 

details for these tests is provided in Section 3.1.5.3. 
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Table 15. Theme 3 testing matrix 

Series 

Zinc 

Source 

Final 

TSP 

TSP Addition 

Technique 

Operating 

Temperature 

Testing 

Duration 

3.1 Pure Zinc 10 mM A 85°C 24 hours 

3.2 Pure Zinc 5.58 mM A 85°C 24 hours 

3.3 Galvanized Steel 5.83 mM B 85°C 2 days 

3.4 Galvanized Steel 5.83 mM C 85°C 2 days 

3.5 Galvanized Steel 5.83 mM B 65°C 2 days 

3.6 Galvanized Steel 5.83 mM C 65°C 2 days 

3.7 Galvanized Steel 5.83 mM B 45°C 2 days 

3.8 Galvanized Steel 5.83 mM C 45°C 2 days 

3.9 Galvanized Steel 5.83 mM B 25°C 2 days 

3.10 Galvanized Steel 5.83 mM C 25°C 2 days 

 

Table 16. TSP addition techniques for Theme 3 tests 

TSP  

Addition 

Technique 

TSP Addition 

Time 

TSP Addition 

Amount 

Number of 

Additions 

Other 

Notes 

A 20, 40, and 60 min. 
1/3 of final 

concentration 
3 

Coupon left in 

solution 

B 
5 or 30 min., or 

1, 4, 8, 16, or 24 hrs. 
All at once 1 

Coupon left in 

solution 

C 
5 or 30 min., or 

1, 4, 8, 16, or 24 hrs. 
All at once 1 

Coupon removed 

from  solution prior 

to TSP addition 
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4.3.1 Theme 3 Zinc Release Analysis 

Zinc release was measured through ICP by HEAL, as described in Section 4.1.1.  Figure 

40 and Figure 41 show the zinc release results for Series 3.1 and 3.2, along with the TSP 

concentration at the corresponding sampling times.  These two series utilized TSP addition 

technique A, which involved a gradual increase in TSP concentration during the early 

stages of testing. 

Figure 40. Series 3.1 zinc release 
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Figure 41. Series 3.2 zinc release 

 

Striking similarities exist between both of these series.    In each case, the 

concentration of dissolved zinc experienced a sharp increase while the tests were 

unbuffered, achieving a concentration of 2.5 mg/L and 2.0 mg/L in Series 3.1 and 3.2, 

respectively.  This trend was expected from the results of Theme 1 testing.  Another 

similarity between these tests is that the addition of TSP into the solution has an immediate 

impact on the release and precipitation of dissolved zinc, with consecutive additions of 

TSP resulting in a more dramatic response by the dissolved zinc; this is especially evident 

in Series 3.2.  The last similarity between these two series is the final trend of dissolved 

zinc, which in both cases, falls to be approximately within range of the dissolved zinc 

concentrations from Theme 2 testing.  But what make these tests unique is their differences. 

In Series 3.1, the release of zinc into solution is the dominant mechanism only when 

there is no TSP present; once TSP is added (3.33 mM TSP), the concentration of dissolved 

zinc begins decreasing, indicating that the precipitation mechanism begins to dominate 
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release.  These results contrast with Series 3.2, where zinc continues to release into solution 

after the first addition of TSP, albeit at a decreased rate.  The maximum dissolved zinc 

concentration is not defined in Series 3.2 until the final dose of TSP is added, which reveals 

a local maximum in zinc concentration at 60 minutes.  After the requisite quantity of TSP 

is added to the solution in all tests, the zinc concentration continues to trend lower. 

The reaction to the TSP additions is unique between tests.  From the time that the 

maximum dissolved zinc concentration is achieved until the fifth hour of testing, the 

differences between these series become evident.  In Series 3.1, the zinc concentration 

reduces from 2.5 to 1.5 within the first five hours of testing, and finally to a value of 1.1 

mg/L by the twenty-fourth hour.  In Series 3.2, however, the higher maximum of 3.0 mg/L 

decreases to 0.69 mg/L by the fifth hour, and falls even more to 0.17 mg/L by the twenty-

fourth hour. 

This behavior may be a result of the high sensitivity of chemical precipitation to 

factors such as phosphate concentration, zinc availability, and precipitate nucleation site 

availability.  The series with the greatest zinc concentration fell to a lower zinc 

concentration more rapidly, suggesting that the difference between the two maxima of the 

series represents a requite threshold of zinc concentration necessary to induce precipitation.  

Surface precipitation will be discussed in greater detail in Section 4.3.4. 

Testing Series 3.3 through 3.10 depart from the testing conditions in Series 3.1 and 

3.2.  Galvanized steel is chosen as the source of zinc, four different temperatures are used, 

and buffer addition occurs all at once.  With even-numbered series, beginning with 3.4, the 

source of zinc is removed prior to buffer addition to compare precipitation with and without 

a zinc source coupon present. Figure 42-Figure 45 show the measured dissolved zinc 
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concentration of Series 3.3 through 3.10.  Also included in these figures is the 

corresponding prompt release data from Series 1.3 through 1.6.  Each yellow or blue 

colored line represents a single test in a given series.  The data for these lines exists at their 

origin on the red curve—the prompt release series which corresponds to the series included 

in the plot—and at the final shown then the duration has reached 48 hours.  The lines are 

added as a visual guide between the two points on the prompt release curve and at 48 hours, 

but do not necessarily inform about the release profile. 
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Figure 42. Series 3.3 and 3.4 (85°C) zinc concentration 

 

Dissolved zinc precipitation follows a few key trends in Series 3.3 and 3.4.  In 

Series 3.3, zinc in solution decreased in solution for all tests that were exposed to boric-

acid-only solution for greater than thirty minutes prior to TSP addition.  This suggests that 
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zinc phosphate precipitation occurs, but surface analysis is required to determine if 

precipitation occurs in solution or on the coupon surface.  Adding TSP after 30 minutes (or 

less) of prompt release testing is not sufficient to stop zinc release, which suggests that 

precipitation is dominated by release.   

In Series 3.4, zinc concentration decreased in solution for all (see exception, below) 

tests following TSP addition.  This suggests that zinc phosphate precipitates in solution, 

and may be available to interact the ECCS sump pump debris beds.  The only exception to 

this observation occurs during the test where TSP was added after only five minutes of 

exposure.  However, the difference between the prompt release point and the datum at 

forty-eight hours of testing is 0.05 mg/L, which is within the reportability limit of HEAL’s 

ICP report. 

When comparing Series 3.3 with 3.4, more trends in precipitation emerge.  When 

TSP is added to the solution after eight hours or less of boric acid-only exposure, zinc 

removal by precipitation is greatest when no coupon is present.  This suggests that surface 

precipitation may be competing with release when a coupon sample is present. However, 

beyond eight hours of boric acid-only testing, when TSP is added, precipitation is greatest 

when the coupon is present.  This suggests that with a high enough zinc concentration under 

these testing conditions, a galvanized steel coupon promotes precipitation. 
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Figure 43. Series 3.5 and 3.6 (65°C) zinc concentration 

 

Zinc removal by precipitation appears to be less orderly in Series 3.5 and 3.6 when 

compared with Series 3.3 and 3.4.  The precipitation of zinc in Series 3.5 appears stochastic, 

with release and precipitation serving as competing mechanisms for the duration of testing.  
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For Series 3.6, dissolved zinc is only removed from solution when the concentration of 

zinc exceeds 10 mg/L prior to TSP addition. 

Figure 44. Series 3.7 and 3.8 (45°C) zinc concentration 
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For the tests conducted at 45°C, the presence of the zinc source in solution did not 

strongly influence the removal of dissolved zinc from solution.  For both Series 3.7 and 

3.8, the rate of precipitation was greatest when the dissolved zinc concentration in solution 

was between 40 mg/L and 70 mg/L.  

Figure 45. Series 3.9 and 3.10 (25°C) zinc concentration 

 



www.manaraa.com

96 
 

In Series 3.9 testing, the coupon played a significant role in the competing 

mechanisms of release by dissolution and precipitation.  Zinc continued to release from 

galvanized steel after TSP was added for tests that were under prompt release conditions 

for eight hours or less.  One exception to this was the test where TSP was added after one 

hour: the prompt release concentration was 4.2 mg/L at 1 hour of testing, and the zinc 

concentration at the forty-eighth hour was 3.5 mg/L.  This 18% difference may not be 

significant. 

In Series 3.10 tests, the removal of the coupon from the testing solution always 

resulted in a decrease in the dissolved zinc concentration. This suggests that zinc phosphate 

precipitates in solution, and may be available to interact the ECCS sump pump debris beds.   

In comparing Series 3.9 with 3.10, another trend is observed.  At sufficiently high 

zinc concentration—greater than 60 mg/L —the galvanized steel coupon (Series 3.9) 

promoted greater precipitation than when the coupon was not present (Series 3.10).  This 

suggests that the inventory of zinc being removed by precipitation has been deposited on 

the coupon surface, and is less likely to interact with the ECCS sump pump.  In contrast, 

at lower zinc concentrations—lower than 60 mg/L —precipitation was not consistently 

aided or hindered by the presence of the coupon. 

4.3.2 Theme 3 Turbidity Analysis 

Turbidity data for Theme 3 tests is available from tests in Series 3.3 through 3.10.  The 

changes in turbidity from the prompt release period (Series 1.3-1.6) to the final turbidity 

measurements taken after forty-eight hours of testing are plotted Figure 46. 
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Figure 46. Theme 3 turbidity measurements 

 

At first glance, this data (Figure 46) does not display a clear trend.  But one key 

trend is observed with the change in turbidity following addition of TSP.  There is an 

upward drift in the change in turbidity.  This suggests that longer exposure times to the 

unbuffered coolant solution will increase the turbidity by increasing amounts. 

In general, it was found that the concentration of zinc tended to increase during the 

prompt release period of the Series 1.3 through 1.6 tests (Section 4.1.1).  This corresponds 

with a higher total change in turbidity (Figure 46) from the measured prompt turbidity 

(Section 4.1.2). 

Recall that turbidity is a relative measurement of the clarity of water.  A higher 

turbidity corresponds with a more particulate-rich aqueous environment.  The trend 

observed in these series confirms that zinc released later during the prompt zinc release 

period is increasing more of a threat to develop particulates and precipitates which may 

interact with the ECCS sump strainer. 
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4.3.3 Theme 3 pH Analysis 

All series in Theme 3 have initial chemistry identical to Theme 1 tests: 220 millimolar 

boric acid.  Following the addition of TSP, the testing solution chemistry more resembles 

Theme 2 tests in that there is phosphate buffer present.  Therefore, it is expected that the 

final pH of the testing solutions should be similar to Theme 2 tests.  The pH measurement 

results are available for Series 3.3 through 3.10, and are shown in Table 17. 

Table 17. Theme 3 pH measurements after TSP addition 

Series 

Operating 

Temperature 

TSP 

Added 

Average pH  

after TSP addition 

Standard 

Deviation 

3.3 85°C 5.83 mM 7.42 0.06 

3.4 85°C 5.83 mM 7.41 0.05 

3.5 65°C 5.83 mM 7.42 0.05 

3.6 65°C 5.83 mM 7.44 0.06 

3.7 45°C 5.83 mM 7.30 0.07 

3.8 45°C 5.83 mM 7.29 0.03 

3.9 25°C 5.83 mM 7.23 0.04 

3.10 25°C 5.83 mM 7.20 0.10 

 

The pH measurements from these tests show that the final pH of the testing solution 

is dependent on the temperature of the solution.  Pure water follows a different trend, where 

a higher temperature corresponds to a lower pH.  The pH measurements collected for these 

series then suggests that a non-ideal behavior is exhibited by the solution, perhaps due to 

the presence of either a retrograde soluble metal (zinc) or two competing buffers 

(phosphate and borate). 
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4.3.4 Theme 3 surface Composition Analysis 

Spectral data from EDS analysis is available for all tests which contained a zinc source 

coupon—Series 3.1, 3.2, 3.3, 3.5, 3.7, and 3.9.  The available EDS spectral data for Series 

3.1 and 3.2 are shown in Figure 47 and Figure 48. 

Figure 47. Series 3.1 (pure zinc) EDS spectral results in atomic percentage (%) with testing duration and 

TSP concentration in millimolar 

 



www.manaraa.com

100 
 

Figure 48. Series 3.2 (pure zinc) EDS spectral results in atomic percentage (%) with testing duration and 

TSP concentration in millimolar 

  

The data shows distinct behavior in the development of oxide scale and phosphate 

scale layers.  Series 3.1 had a more rapid rate of TSP introduction, and is displaying an 

earlier development of zinc oxide scale layers.  Series 3.2 had a slower rate of TSP 

introduction, and is displaying a later development of zinc oxide scale layers.  Interestingly, 

though, is that phosphate scale layers develop in reverse order. 

The earlier development of phosphate scale layers on the tests in Series 3.2 may be 

a response to the earlier chemical environment of these tests.  The ICP measurements 

indicated that the dissolved zinc in solution concentration reached a higher maximum (3.0 

mg/L) than Series 3.1 tests (Section 4.3.1), which may be an essential contributor to the 

earlier development of the zinc phosphate surface precipitation.   

By the twenty-fourth hour of testing, there is approximately equal surface 

composition of zinc, oxygen, and phosphate for both series.  These quantities are shown in 

Table 18. 
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Table 18. Series 3.1 and 3.2 (pure zinc) EDS spectral results in atomic percentage (%) 

Series Zinc Oxygen Phosphorus 

3.1 28.3 56.6 10.8 

3.2 29.6 56.9 9.3 

Average 29.0 56.8 10.1 

 

Zinc phosphate [Zn3(PO4)2] has an atomic composition ratio of zinc: oxygen: 

phosphorus equal to 3:8:2.  Assuming that phosphate is dominantly found in the form of 

zinc phosphate, the whole inventory of 10.1% phosphate may be attributed to zinc 

phosphate, which means that 40.4% oxygen and 15.2% zinc are also bound to zinc 

phosphate on the coupon surface.  Subtracting these values from the total measured atomic 

percentages leaves 13.8% zinc and 16.4% oxygen.  Zinc oxide has an elemental 

composition of equal parts zinc and oxygen (ZnO).  The remaining amounts of zinc and 

oxygen roughly account for development of zinc oxide.  Therefore, after twenty-four hours 

of testing, zinc is found in zinc phosphate and zinc oxide in roughly equivalent amounts: 

52.4% of the available zinc is in phosphate form, and 47.6% is found in zinc oxide form. 

The EDS spectral data from Series 3.3, 3.5, 3.7, and 3.9 is also available, and is 

shown in Table 19, Table 20, Table 21, and Table 22. 
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Table 19. Series 3.3 (galvanized steel) EDS spectral results in atomic percentage (%) 

TSP added after… Zinc Oxygen Phosphorus Aluminum 

5 min 83.14 16.86    

30 min 23.26 65.56 10.53  

1 hr 83.96 16.04    

4 hrs. 24.47 61.24 13.66  

8 hrs. 63.79 32.01 4.2  

16 hrs. 26.95 60.3 11.99  

24 hrs. 33.83 55.8 10.37  

 

Table 20. Series 3.5 (galvanized steel) EDS spectral results in atomic percentage (%) 

TSP added after… Zinc Oxygen Phosphorus Aluminum 

5 min 100     

30 min 100     

1 hr 100     

4 hrs. 100     

8 hrs. 50.73 41.92 7.35  

16 hrs. 37.95 50.34 11.71  

24 hrs. 32.38 54.44 12.07  
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Table 21. Series 3.7 (galvanized steel) EDS spectral results in atomic percentage (%) 

TSP added after… Zinc Oxygen Phosphorus Aluminum 

5 min 100     

30 min 100     

1 hr 100     

4 hrs. 100     

8 hrs. 100     

16 hrs. 27.16 56.93 14 1.59 

24 hrs. 41.2 48.58 10.23   

 

Table 22. Series 3.9 (galvanized steel) EDS spectral results in atomic percentage (%) 

TSP added after… Zinc Oxygen Phosphorus Aluminum 

5 min 100     

30 min 100     

1 hr 100     

4 hrs. 100     

8 hrs. 29.16 57.15 11.79 1.91 

16 hrs. 65.3 30 4.7   

24 hrs. 58.09 41.91     

 

These EDS spectral results have shown that zinc phosphate will precipitate on the 

surface of coupons, but only if the prompt release testing conditions were maintained for a 

sufficiently duration.  Interestingly, zinc phosphate did not precipitate at all on the sample 

exposed to prompt release conditions for twenty four hours in Series 3.9.  This may suggest 

that a sufficiently dominant surface oxide layer developed, hindering zinc phosphate 

precipitation, as was seen in the five-hour test of Series 3.1 (Figure 47). 
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4.3.5 Theme 3 Qualitative Imaging Analysis 

Surface imaging from SEM analysis is available for select tests in Series 3.1, 3.2, and 3.9.  

All Theme 2 surface imaging was performed at 1000 times magnification.  Figure 49 and 

Figure 50 contain the images corresponding to the fifth and twenty-fourth hours of testing 

in Series 3.1 and 3.2.  For these two series, TSP was slowly introduced to the testing 

solution with Series 3.1 receiving a larger total quantity of TSP. 

Figure 49. Series 3.1 SEM images 

  

5 hrs. testing, 0-10 mM TSP 24 hrs. testing, 0-10 mM TSP 
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Figure 50. Series 3.2 SEM images 

  

5 hrs. testing, 0-5.58 mM TSP 24 hrs. testing, 0-5.58 mM TSP 

 

The SEM imaging from Series 3.1 and 3.2 has confirmed the findings presented 

with the EDS spectral results in Section 4.3.4.  In both series, the twenty-four-hour tests 

had equivalent elemental surface composition comprising primarily of zinc, phosphorus, 

and oxygen.  The SEM imaging reveals similar qualitative surface properties, specifically 

with the scale formation and qualitative surface roughness. 

The crucial difference between the samples from the fifth hour of testing in these 

series was the confirmation of the presence of phosphorus on the surface on the Series 3.2 

coupon sample.  By examining the SEM images, this critical difference in surface 

composition may be observed—the Series 3.2 coupon visibly contains small precipitate 

deposits which resemble smaller versions of the scale deposits present on coupon samples 

tested for twenty-four hours.  These small deposits may serve as nucleation points for 

further zinc phosphate precipitation.  The discussion in Section 4.3.4, which explained that 

the surface composition is a product of the sensitive chemical environment during the TSP 

additions, is supported by these findings. 



www.manaraa.com

106 
 

The SEM surface imaging results from Series 3.9 are shown in Figure 51, Figure 

52, and Figure 53. 

Figure 51. Series 3.9 SEM images, part 1/3 

  

5 min. prompt testing, then 

Exposed to 10 mM TSP 47 hrs. 55 min. 

60 min. prompt testing, then 

Exposed to 10 mM TSP 47 hrs. 
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Figure 52. Series 3.9 SEM images, part 2/3 

 
 

4 hrs. prompt testing, then 

Exposed to 10 mM TSP 44 hrs. 

8 hrs. prompt testing, then 

Exposed to 10 mM TSP 40 hrs. 

 

Figure 53. Series 3.9 SEM images, part 3/3 

  

16 hrs. prompt testing, then 

Exposed to 10 mM TSP 32 hrs. 

24 hrs. prompt testing, then 

Exposed to 10 mM TSP 24 hrs. 

 

The SEM imaging of Series 3.9 shares prominent similarities with both the Theme 

1 and Theme 2 SEM images.  The first two images in this series resemble the first two 
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images from Series 1.6—there is slight, but noticeable, destruction on the coupon surface.  

In these images, pitting, which is often in clusters, is the presumed mechanism for zinc 

release from the coupon. 

The final four images of Series 3.9 look a lot like the final four images of Series 1.6 

imaging, with one key difference: the pitting and voids that are on the coupon surface have 

been filled with zinc phosphate crystals, which resemble the scale crystals found in Theme 

2 imaging.  Remarkably, these zinc phosphate crystal structures appear to be restricted to 

the regions where small pitting clusters merged into large pits, suggesting that the zinc 

phosphate growth is promoted and is thermodynamically favorable in the texturally-rough 

pits rather than on the smoother surfaces of the non-dissolved and non-pitted areas. 

Another notable finding in the final image is the presence of a hexagonal pit, similar 

to those found in Series 1.6 images (Section 4.1.5).  This pit is located near the left-center 

of the image, and is noticeable with careful inspection.  More hexagonal pitting may be 

present; if so, they are concealed by zinc phosphate crystal growth.   

4.4 Theme 4: Zinc and Aluminum Integrated Effects  

The fourth testing theme was developed to quantify the integrated chemical effects of zinc 

and aluminum when combined in a representative testing solution.  There is only one 

testing series in this Theme: Series 4.1.  Additional details for this series is provided in 

Section 3.1.5.4.  Analyses for Series 4.1 is limited to dissolved metal concentrations and 

pH.  Turbidity and surface data (EDS and SEM) are not available. 
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There are tests outside of Theme 4 testing which will serve as a baseline for 

comparison for Series 4.1.  To determine the effects that aluminum has on the behavior of 

zinc, Series 2.1 will serve as the baseline tests.  Series 2.1 tests were conducted under the 

same conditions as Series 4.1, except that in Series 4.1, aluminum has been added.   The 

baseline tests for aluminum reference may be found in [41]. 

4.4.1 Theme 4 Zinc and Aluminum Release Analysis 

Zinc and aluminum release was measured through ICP by HEAL, as described in Section 

4.1.1.  Figure 54 shows the Series 4.1 zinc release results compared with Series 2.1 zinc 

measurements.  Figure 55 contains the Series 4.1 aluminum release results compared with 

the baseline aluminum tests (Section 4.4). 

Figure 54. Series 4.1 zinc release 
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The ICP measurements for dissolved zinc concentration in Series 4.1 show that the 

results agree well with the measurements made in Series 2.1.  Aluminum does not have an 

appreciable effect on the release of zinc. 

 

Figure 55. Series 4.1 aluminum release 

 

The ICP measurements for dissolved aluminum concentration in Series 4.1 show 

that there is a significant response to the presence of zinc.  There is a dramatic reduction in 

the dissolved aluminum concentration when zinc has been added to the testing solution.  

The comparison between each available datum is shown in Table 23. 
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Table 23. Series 4.1 aluminum concentration and baseline comparison 

Test 

Duration 

Baseline Dissolved 

Aluminum Content 

Series 4.1 Dissolved 

Aluminum Content 

Ratio of Series 4.1 Aluminum 

 Concentration to baseline 

5 hrs. 5.4 mg/L 2.0 mg/L 0.37 

11 hrs. 9.2 mg/L 3.0 mg/L 0.33 

24 hrs. 9.9 mg/L 3.4 mg/L 0.34 

54 hrs. 9.4 mg/L 3.1 mg/L 0.33 

120 hrs. 9.2 mg/L 3.1 mg/L 0.34 

 

When zinc is present in solution, the aluminum concentration is reduced by roughly 

a factor of three.  This reduction may be attributed to the anodic behavior of zinc; zinc will 

catholically shield corrosion of many other metals. 

4.4.2 Theme 4 pH Analysis 

Series 4.1 had an initial chemistry identical to Series 2.1, which includes 220 millimolar 

boric acid and 10 millimolar TSP, which naturally settles at a pH value near 7.3.  The 

measurements for the final pH for Series 4.1 are shown in Figure 56. 
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Figure 56. Theme 4 final pH 

 

The pH measurements from Series 4.1 do not exhibit any unusual behaviors.  The 

pH for all three sets of testing solutions remains within the bounds of pH measurements 

made with the Series 2.1 tests, and within 0.1 pH unit of the baseline aluminum tests. 

4.5 Theme 5: Chemical Descaling Methods to Quantify Scale Layer 

The fifth testing theme studied the effectiveness of various descaling methods applied to 

zinc source coupons after testing in buffered, borated solution.  Select coupon samples tests 

from Series 2.1 were descaled, and these efforts were collected into Series 5.1-5.4.  Four 

descaling methods were applied, and are detailed in Table 24. 
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Table 24. Theme 5 testing matrix and descaling chemical composition 

Series Descaling Chemical 

Descaling Solution 

Composition 

Descaling Solution 

Temperature 

Exposure 

Duration 

5.1 Ammonium persulfate 100 g/L 22°C 5 min. 

5.2 Ammonium chloride 100 g/L 70°C 5 min. 

5.3 Ammonium acetate 100 g/L 70°C 5 min. 

5.4 Hydrochloric acid 1% by weight 22°C 10 sec. 

 

Descaling the zinc source coupon is a technique that has been applied to more 

accurately quantify the amount of scale that develops on a surface; these techniques are not 

intended to be applied to containment materials following a LOCA. 

Four techniques are employed to validate effectiveness of zinc-source surface 

descaling: (1) zinc content in the descaling solutions to quantify the amount of zinc 

removed; (2) coupon mass change before and after descaling to connect the mass change 

of the coupon to the amount of zinc removed by the first technique; (3) EDS analysis to 

determine the effectiveness at removing scale layers by measuring surface elemental 

composition; and (4) SEM imaging to qualitatively assess surface cleanliness. 

Reference SEM images are shown in Figure 57.  These images provide a baseline 

image of a clean, untested surface, and a surface that has been tested, but not descaled. 
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Figure 57. Theme 5 baseline SEM images 

  

Pure zinc, clean Pure zinc, 24 hrs. tested at 10 mM TSP 

 

4.5.1 Series 5.1 (Ammonium Persulfate) Analysis 

The mass lost by a coupon and the amount of zinc removed through descaling for Series 

5.1 are shown in Table 25.  The descaling solution used was ammonium persulfate. 

Table 25. Series 5.1 Total mass lost through descaling and zinc lost through descaling 

Exposure Time to 

Borated and Buffered 

Testing Solution 

Mass Lost 

From Coupon 

Zinc Removed with 

Descaling Solution 

% of Mass Loss 

Attributed to Zinc 

1.5 hrs. 99 mg 80 mg 81% 

5 hrs. 95 mg 79 mg 83% 

24 hrs. 63 mg 48 mg 76% 

 

There are two primary forms of zinc corrosion products in these tests: zinc oxide 

and zinc phosphate.  Zinc oxide is approximately 80% zinc by mass, and zinc phosphate is 
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approximately 51% zinc by mass.  The data available in Table 25 suggests that zinc oxide 

has been removed from the surface.  This hypothesis may be tested through EDS analysis, 

which is shown in Table 26 for the twenty-four hour test.  This EDS spectrum is compared 

with an analogous sample from Series 2.1, a coupon sample which was tested under the 

same conditions but not descaled. 

Table 26. Series 5.1 (pure zinc) EDS spectral results in atomic percentage (%) 

Sample Analyzed Zinc Oxygen Phosphorus 

Series 5.1 – 24 hr. Test 35.3 58.4 6.3 

Series 2.1 – 24 hr. Test 39.6 52.4 8.0 

 

The EDS spectral results have shown that surface composition does not 

significantly change with descaling.  This invalidates the hypothesis that the descaling 

solution for Series 5.1 removes zinc oxide. 

The final analysis, the qualitative SEM imaging, is provided in Figure 58. 

Figure 58. Series 5.1 SEM image after descaling with ammonium persulfate 
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The SEM image of the descaled coupon has shown that the coupon surface is 

neither clean nor undamaged by the descaling solution.  The descaling method has failed 

to remove zinc scale from the surface, confirmed by EDS analysis, the mass lost analysis 

has not conclusively determined what has been removed, and the SEM imaging does not 

support surface cleanliness.  Therefore, ammonium persulfate is not an effective descaling 

solution for removing scale or for informing what was removed with the descaling solution. 

4.5.2 Series 5.2 (Ammonium Chloride) Analysis 

The mass lost by a coupon and the amount of zinc removed through descaling for Series 

5.2 are shown in Table 27.  The descaling solution used was ammonium chloride. 

Table 27. Series 5.2 Total mass lost through descaling and zinc lost through descaling 

Exposure Time to 

Borated and Buffered 

Testing Solution 

Mass Lost 

From Coupon 

Zinc Removed with 

Descaling Solution 

% of Mass Loss 

Attributed to Zinc 

1.5 hrs. 1.3 mg 0.46 mg 35% 

5 hrs. 5.6 mg 0.58 mg 10% 

24 hrs. 1.2 mg 0.71 mg 59% 

 

The data available in Table 27 would lead to no conclusion about the identity of the 

removed scale layers, whether it was zinc oxide, zinc phosphate, or metallic zinc removed.  

A markedly reduced amount of both total mass and total zinc was removed with this 

cleaning method when compared with the first descaling method.  EDS analysis is 
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necessary to determine the effectiveness of this descaling method; these results are shown 

in Table 28. 

Table 28. Series 5.2 (pure zinc) EDS spectral results in atomic percentage (%) 

Sample Analyzed Zinc Oxygen Phosphorus 

Series 5.2 – 24 hr. Test 35.1 56.1 8.8 

Series 2.1 – 24 hr. Test 39.6 52.4 8.0 

 

Similar to the results of the first descaling solution, the surface composition has not 

significantly changed with descaling.  SEM imaging for this coupon sample in provided in 

Figure 59. 

Figure 59. Series 5.2 SEM image after descaling with ammonium chloride 

 

 

There are visibly zinc phosphate crystals in this SEM image.  This indicates that 

the descaling solution was ineffective at removing zinc scale.  The descaling method has 

failed to remove zinc phosphate from the surface, the mass lost analysis has not 

conclusively determined what has been removed, and the SEM imaging has confirmed that 
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zinc scale has not been removed.  Therefore, ammonium chloride is not an effective 

descaling solution. 

4.5.3 Series 5.3 (Ammonium Acetate) Analysis 

The mass lost by a coupon and the amount of zinc removed through descaling for Series 

5.3 are shown in Table 29.  The descaling solution used was ammonium acetate. 

Table 29. Series 5.3 Total mass lost through descaling and zinc lost through descaling 

Exposure Time to 

Borated and Buffered 

Testing Solution 

Mass Lost 

From Coupon 

Zinc Removed with 

Descaling Solution 

% of Mass Loss 

Attributed to Zinc 

1.5 hrs. 0.4 mg 0.40 mg 100% 

5 hrs. None 0.74 mg N/A 

24 hrs. 1.6 mg 0.86 mg 54 % 

 

The data available in Table 29 is inconclusive; the scale layers cannot be identified 

with this information.  For the coupon tested for 1.5 hours before descaling, there are 

similar quantities of both zinc lost and total mass lost.  This results would suggest that 

metallic zinc has been stripped from the coupon surface, rather than corrosion products. 

There are competing factors in this analysis, such as scale removal and additional 

scale layering induced by the descaling solution.  This is made clear by observing the 

results from the five-hour duration test.  There was not a net mass change with the coupon, 

but zinc was definitely removed from the coupon, as evidenced by the Zinc Remove with 

Descaling Solution column. 
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Additional insights may be provided by the EDS spectral data.  This information is 

presented in Table 30.  The EDS spectral results have shown that the surface composition 

slightly shifts after exposure to the descaling solution.  Relative compositional quantities 

of both zinc and phosphorus increase, while the relative oxygen decreases.  However, in 

all cases, the surface remains within 17% of the original surface composition.  SEM 

imaging is provided in Figure 60. 

Table 30. Series 5.3 (pure zinc) EDS spectral results in atomic percentage (%) 

Sample Analyzed Zinc Oxygen Phosphorus 

Series 5.3 – 24 hr. Test 42.0 50.4 7.6 

Series 2.1 – 24 hr. Test 39.6 52.4 8.0 

 

Figure 60. Series 5.3 SEM image after descaling with ammonium acetate 

 

 

As with ammonium chloride in the previous section, ammonium acetate has not 

removed zinc phosphate crystals from the surface.  These results have shown that 

phosphate scale is not effectively removed from the surface, the mass loss data is 
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inconclusive, and SEM imaging has confirmed the presence of scale on the coupon surface.  

Therefore, ammonium acetate is not an effective descaling solution for removing scale or 

for informing what was removed with the descaling solution. 

4.5.4 Series 5.4 (Hydrochloric Acid) Analysis 

The mass lost by a coupon and the amount of zinc removed through descaling for Series 

5.4 are shown in Table 31.  The descaling solution used was hydrochloric acid. 

Table 31. Series 5.4 (pure zinc) Total mass lost through descaling and zinc lost through descaling 

Exposure Time to 

Borated and Buffered 

Testing Solution 

Mass Lost 

From Coupon 

Zinc Removed with 

Descaling Solution 

% of Mass Loss 

Attributed to Zinc 

1.5 hrs. 0.6 mg 0.34 mg 57% 

5 hrs. 1.0 mg 0.81 mg 81% 

24 hrs. 10 mg 4.9 mg 49% 

 

For the coupons tested for 1.5 and 24 hours before descaling, there is a similar value 

for the percent of total mass lost which is attributed to zinc.  This mass lost percentage is 

also similar to the mass percent composition of zinc phosphate (51%). 

To confirm the identity of the removed scale layers, the EDS spectral results are 

necessary.  These results are provided in Table 32.  The EDS spectral results reveal a clean 

surface on the zinc coupon after applying the descaling solution.  The SEM imaging for 

this coupon is provided in Figure 61. 
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Table 32. Series 5.4 EDS spectral results in atomic percentage (%) 

Sample Analyzed Zinc Oxygen Phosphorus 

Series 5.4 – 24 hr. Test 100 0 0 

Series 2.1 – 24 hr. Test 39.6 52.4 8.0 

 

Figure 61. Series 5.4 SEM image after descaling with 1% hydrochloric acid 

 

 

This image reveals no distinguishable signs of phosphate scale.  There is 

considerably more surface wear on this coupon than there was on the un-tested sample; 

however, this may be inherent to the nature of testing and not due to the descaling method. 

The EDS spectral information, along with the corresponding mass analysis 

information and SEM imaging, confirms that the mass lost has the same mass composition 

as zinc phosphate, and the surface is cleaned of all traces of both oxygen and phosphate.  

Therefore, hydrochloric acid is an effective descaling solution for removing scale and for 

informing what was removed with the descaling solution. 
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CHAPTER 5: DISCUSSION AND CONCLUSIONS 

5.1 Theme 1 Discussion 

The prompt release behavior of zinc sources has been investigated in Theme 1.  All three 

sources of zinc exhibited a consistent trend of linear dissolution, as measured by ICP, and 

are functions of both temperature and the source of zinc.  Pure zinc and galvanized steel 

surfaces were tested for durations long enough to detect dissolved zinc concentration 

saturation limits, which was shown to be a function of temperature, but not a function of 

the zinc source.  These results exhibited the retrograde solubility of dissolved zinc. 

Temperature-dependent saturation equations were developed for Series 1.3, 1.4, 

and 1.5, and were used to determine the saturation properties of Series 1.6.  There is not 

enough experimental data to confirm the calculated saturation properties for Series 1.6; 

however, the calculated values were within the limits established by experimental 

measurements. 

EDS spectral measurements showed that zinc oxide scale growth on galvanized 

steel coupons corresponded to the achievement of dissolved zinc solution saturation.  The 

sampling time that preceded the sampling time corresponding to saturation was achieved 

revealed a zinc oxide scale in all series with galvanized steel.  Zinc oxide scale formation 

may be the mechanism through which dissolved zinc is removed from solution to maintain 

the saturation limit as release and precipitation compete in equilibrium. 

Qualitative SEM analysis has shown that with shorter exposure times to the testing 

solution, zinc from galvanized steel was released from the surface in organized clusters, 
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leaving behind surface pitting.  As zinc continued to release from the coupons, these pitting 

clusters grew into larger pits, and eventually culminated in the destruction of surface 

structure.  In a few cases, hexagonal pitting formations were observed; metallic zinc is 

known to have a hexagonal close-packed (HCP) metallic crystal structure, and this is likely 

the cause for this observation. 

5.2 Theme 2 Discussion 

Theme 2 testing series have several valuable findings.  A solubility limit for dissolved zinc 

under these conditions has been established to be 0.8 mg/L of total dissolved zinc.  The 

minimum solubility agrees well with the thermodynamic equilibrium modelling prediction 

for zinc solubility under these conditions (Section 2.1.2), and is approximately 0.1 mg/L.  

Early in the testing for all applicable series, a regular increase in dissolved zinc 

concentration—attributed to zinc releasing from the source—was observed.  In Series 2.2, 

where a lower operating temperature was used, the dissolved zinc concentration grew more 

rapidly than the tests which used the baseline temperature, which displays the retrograde 

solubility behavior of zinc.  Slight adjustments to the pH did not result in a significant 

response to measurable results such as zinc concentration. 

Turbidity measurements showed that with a sufficiently large sampling size, the 

dissolved zinc concentration is accurately predicted by turbidity, but only for tests that had 

a pure zinc coupon for the zinc source; this trend was not observed with galvanized steel 

surfaces as the source of zinc.  This is attributed to the presence of iron in tests that used 

galvanized steel zinc sources. 
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The EDS spectral measurements have confirmed that zinc phosphate scale develops 

on the surfaces of the coupons.  The amount of measured phosphate tends to increase with 

time, which suggests zinc phosphate scale growth.  Qualitative SEM imaging confirmed 

that zinc phosphate scale develops and accumulates over time, growing to cover more of 

the zinc source surface with longer exposure times. 

5.3 Theme 3 Discussion 

Theme 3 tests have displayed the unique behavior that zinc phosphate precipitation exhibits 

when exposed to trisodium phosphate under a range of conditions.  Within the first two 

series of tests, TSP was introduced to the testing solution gradually over the course of an 

hour, at different rates for each series.  EDS spectral results and qualitative surface imaging 

confirmed that zinc phosphate scale layer deposition on the zinc coupon occurred sooner 

for the series with a lower rate of TSP addition (Series 3.2).  This result has been attributed 

to the high sensitivity to three early conditions during the period where TSP was 

introduced: (1) the pH remained lower for longer in Series 3.2, which promoted more rapid 

zinc dissolution, (2) the total inventory of released zinc was greater—3.0 mg/L in Series 

3.2 versus 2.5 mg/L in Series 3.1—and (3) the development of a passive oxide layer on 

Series 3.1 samples, which delayed zinc phosphate precipitate deposition. 

In Series 3.3, 3.5, 3.7, and 3.9, when zinc remained below a particular threshold 

concentration, as defined in Section 4.3.1, the release and precipitation mechanisms 

remained in competition with each other.  However, above the given threshold, 

precipitation tended to dominate over continued release.  For the series at temperatures 
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85°C and 25°C (Series 3.3 and 3.9), the presence of the zinc source coupon promoted even 

more zinc phosphate precipitation than when the coupon was not present in the 

corresponding series without the coupon (Series 3.4 and 3.10). 

For experiments which contained galvanized steel, zinc phosphate tended to 

precipitate and accumulate in surface voids that were created during the prompt release 

phase of the testing, showing preference to the voids over the relatively smooth non-pitted 

surface areas.  Zinc phosphate surface depositions occurred sooner in tests that were 

operated at higher temperatures, as shown in the EDS spectral measurements. 

5.4 Theme 4 Discussion 

Theme 4 testing has shown that the presence of a zinc surface in the same vicinity as an 

aluminum surface has a marked impact on the release and passivation response of the 

aluminum surface.  The measured dissolved aluminum concentration for all experimental 

durations was reduced by a factor of three when zinc was present, while all other 

experimental conditions were maintained the same as the reference tests which only 

contained aluminum surfaces.  This reduction in released aluminum is attributed to the 

electrochemical cathodic shielding that zinc contributes. 

Conversely, the release rate, saturation limit, and other measureable responses of 

the zinc surfaces show that aluminum does not impact zinc behavior in a quantifiable 

manner for these tests. 
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5.5 Theme 5 Discussion 

Tests within Theme 5 experiments have conclusively shown that three ammonium-based 

salts—persulfate, chloride, and acetate—are ineffective at removing zinc phosphate scale 

in a repeatable and quantifiable manner.  To arrive at this conclusion, four techniques were 

applied to these salts, including a benchtop measurement of mass change, a concentration 

analysis by ICP, and surface analyses by EDS and SEM. 

One descaling solution was found to be effective at clearing zinc phosphate scale 

from a pure zinc coupon exposed to borated and TSP-buffered solution.  This solution 

consisted of one-percent by weight hydrochloric acid, with an exposure time of ten 

seconds, performed at room temperature. 

There are shortcomings to these experiments that are worth mentioning.  Due to the 

nature of the experimental process, it was necessary to use benchmark samples for each 

phase of testing.  Separate testing samples were used for (1) a baseline scaling 

quantification and (2) descaling effectiveness.  There may be slight differences between 

the scale layer that developed on the tested coupon and the baseline coupon, and this is not 

quantifiable. 

There is no spectral EDS information available for tests with durations of 1.5 hours 

or five hours, which restricts the analyses to coupons which were exposed to the testing 

solution for twenty-four hours. 
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5.6 Conclusions 

Numerous experiments have been performed which involved examining the chemical 

effects that zinc contributes to a post-LOCA environment.  Galvanized steel, IOZ, and pure 

zinc surfaces have been tested in chemical environments similar to those expected during 

a LOCA.  Boric acid representative of the dissolved boron in reactor coolant comprised the 

primary testing solution.  To this solution, chemicals were added including trisodium 

phosphate, aluminum, hydrochloric acid, and sodium hydroxide to test the effects of 

phosphate buffering, secondary metal interactions, and pH responses to phenomenology 

such as dissolution and precipitation.  A range of experimental temperatures were used to 

show the competition between precipitation and retrograde solubility characteristics of 

zinc. 

Experiments were divided by a specific set of conditions into five distinct Themes 

of testing.  The first three themes were designed around the interaction of zinc-bearing 

surfaces with coolant, including before, during, and after trisodium phosphate buffer is 

expected to dissolve and contribute to post-LOCA chemistry.  The fourth experimental 

testing theme included the coupled effects of aluminum and zinc sources, and the response 

each source has on the other.  A final testing theme was designed to test the effectiveness 

of descaling solutions, which were designed to help quantify the zinc phosphate scale layer 

development on zinc surfaces that had exposure to borated, buffered testing solution. 

Among the most important finding of this body of research is the detection of zinc 

phosphate scale formation.  Discovering chemical precipitates and scale formation is a key 

focus of the GSI-191 chemical effects experimental work, because such products may 
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interact with the ECCS sump debris bed, resulting in restricted flow and potential damage 

to ECCS capabilities during a LOCA.  In several tests, zinc phosphate scale was observed 

growing on the coupon sample surfaces in a crystalline form, which showed development 

over time.  Zinc phosphate precipitate deposition and scale growth began with small 

isolated crystals which, over time, grew to cover a majority of the coupon surfaces. 

The dissolution and release of zinc was found to be greatest under non-TSP-

buffered conditions, and by a significant margin.  The dissolved zinc concentration in 

buffered experiments remained within the range of 0.1 to 0.8 mg/L TSP for all tests with 

durations ranging from thirty minutes through ten days; this result agrees with 

thermodynamic modelling simulations (Chapter 2).  In testing solutions which did not 

contain any TSP buffer, the concentration of dissolved zinc reached as high as 120 mg/L; 

the maximum release expected is 124 mg/L at twenty-six hours of exposure to unbuffered 

solution at 25°C.  The prompt release of zinc in unbuffered tests was found to be linear 

until a temperature-specific saturation limit was achieved, which followed the retrograde 

solubility behavior of dissolved zinc.  A zinc oxide layer development on the surface of 

coupons corresponds with the achievement of a dissolved zinc saturation limit in all 

prompt-release tests for which this data exists. 

Zinc was found to be an effective sacrificial electrode when paired with iron and 

aluminum.  Iron release from the edges of galvanized steel was passivated at a value 

roughly four times lower than expected (Section 4.1.1).  The release of aluminum from an 

aluminum coupon was reduced by a factor of three while zinc was present (Section 4.4.1), 

and the saturation limit of dissolved aluminum was likewise reduced by a factor of three.  
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There was no observed effect on the release of zinc, which means that zinc effectively 

protects against greater amounts of iron and aluminum release. 

The pH-buffering capabilities of phosphate were shown for all tests which included 

TSP.  For any such given testing conditions, a range of plus-or-minus 0.2 pH units or less 

was observed, indicating that the pH is buffered while phosphate is present.  A significantly 

more dramatic response was observed in the pH trends of non-TSP-buffered tests, which 

was attributed to the consumption of dissolved hydronium through the oxidation of metals, 

which resulted in an increase in pH. 

To quantify scale layer development, four techniques were employed.  Three 

ammonium salts (persulfate, chloride, and acetate) and one strong acid (HCl) were used to 

test whether any of the methods could successfully remove zinc phosphate scale from the 

surface of the coupons with the objective of quantifying the amount of zinc phosphate that 

had developed during testing.  The application of the strong acid hydrochloric acid was 

found to be effective at removing scale layers, and the ammonium-based salts were not 

effective or reliable.  None of the methods were able to quantify scale layers. 

This body of research has shown that zinc contributions to the post-LOCA chemical 

environment are significant.  Zinc phosphate readily forms, and may transport to interfere 

with ECCS sump operations.  Dissolved zinc may be generated in large quantities during 

the early-stages of a LOCA.  The concentration of dissolved zinc has been shown to 

increase with a decreasing temperature, suggesting that the natural cooling of containment 

in a post-LOCA will promote additional zinc dissolution, further compounding the impact 

of ECCS operations.  The presence of zinc may be beneficial in particular instances, where 

its presence has been shown to reduce aluminum and iron corrosion. 
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5.7 Future Work 

There is a need to determine the transportability of dissolved zinc and zinc-based corrosion 

products through the containment building during post-LOCA operations.  Zinc phosphate 

scale deposition and growth on zinc surfaces has been confirmed through this research, but 

the stability of scale layers should be quantified.  If zinc phosphate scale can be shown to 

remain on the zinc surface under a range of flow conditions, then the impact of scale 

transport to the ECCS is minimized.  However, if zinc phosphate scale is easily sheared 

from the surfaces on which they develop, the impact on ECCS operations may be very 

significant.  Previous research has shown that sump head loss effects correspond with zinc 

phosphate development under specific conditions.  A controlled environment with zinc 

isolated from other metals is necessary to determine the impact that zinc phosphate scale 

may have on sump head loss. 

Additional work may also be necessary in TSP-buffered conditions in a variety of 

temperatures.  A majority of the research presented herein involving TSP buffer was done 

at 85°C.  Series 2.2 testing had an operating temperature of 60°C, and the resulting 

dissolved zinc concentration measurements revealed that the release was marginally 

greater at this lower temperature.  The scope of Series 2.2 was limited, and was not long 

enough to capture the saturation limit at that temperature.  Additional tests at other 

temperatures should be performed, and the durations should be extended to allow for 

observing the saturation limits.  Zinc has shown retrograde solubility, so it would be 

expected that the solubility limit of dissolved zinc at lower temperature s should exceed 

the limit of 0.8 mg/L observed in Theme 2 testing (85°C). 
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